In: Statistics and Probability
You operate a luxury hotel in Baltimore that famous celebrities rent for extended periods. The daily price is per room is $1,950. Operating costs average $60,000 per day, regardless of the number of rooms rented. Construct a spreadsheet model to determine the profit if 60 rooms are rented. The manager has observed that the number of rooms rented during any given day varies between 50 and 80 (the total number of rooms available).
a.Use data tables to evaluate the profit for this range of unit rentals.
b.Suppose the manager is considering lowering or increasing the daily price by $100. How will profit be affected? (Hint: use a two-way data table).
Spreedsheet model to determine the profit if 60 rooms are rented
Operating cost of the rooms per day | 60000 |
Rent price per room | 1950 |
Number of rooms rented | 60 |
Profit if 60 rooms are rented | 57000 |
To Calculate Profit , Profit = (Rent*No of rooms rented)-Operating Costs
Enter the formula in the required cell
a)Given that number of rooms rented varies from 50 to 80, we can calculate the profit by one way table
Copy the formula for finding profit in C15 and enter the number of rooms in the cells B16 to B46, Select the range of the table
Go To Data and What If-Analysis and Choose Data Tables
In the opened dialog box, in column cell, select C7 and click Ok, The data table will be as below
Profit amount if the room rent is 1950 | |
Number of rooms rented | Profit |
60 | 57000 |
50 | 37500 |
51 | 39450 |
52 | 41400 |
53 | 43350 |
54 | 45300 |
55 | 47250 |
56 | 49200 |
57 | 51150 |
58 | 53100 |
59 | 55050 |
60 | 57000 |
61 | 58950 |
62 | 60900 |
63 | 62850 |
64 | 64800 |
65 | 66750 |
66 | 68700 |
67 | 70650 |
68 | 72600 |
69 | 74550 |
70 | 76500 |
71 | 78450 |
72 | 80400 |
73 | 82350 |
74 | 84300 |
75 | 86250 |
76 | 88200 |
77 | 90150 |
78 | 92100 |
79 | 94050 |
80 | 96000 |
b)Profit calculation for the varying rent price and number of rooms rented can be done by using two way table .It can be created similar to One way table, except for giving C6 in row cell of the Data Table dialog box.
Number of rooms rented | Profit for the varying room rent | ||
57000 | 1850 | 1950 | 2050 |
50 | 32500 | 37500 | 42500 |
51 | 34350 | 39450 | 44550 |
52 | 36200 | 41400 | 46600 |
53 | 38050 | 43350 | 48650 |
54 | 39900 | 45300 | 50700 |
55 | 41750 | 47250 | 52750 |
56 | 43600 | 49200 | 54800 |
57 | 45450 | 51150 | 56850 |
58 | 47300 | 53100 | 58900 |
59 | 49150 | 55050 | 60950 |
60 | 51000 | 57000 | 63000 |
61 | 52850 | 58950 | 65050 |
62 | 54700 | 60900 | 67100 |
63 | 56550 | 62850 | 69150 |
64 | 58400 | 64800 | 71200 |
65 | 60250 | 66750 | 73250 |
66 | 62100 | 68700 | 75300 |
67 | 63950 | 70650 | 77350 |
68 | 65800 | 72600 | 79400 |
69 | 67650 | 74550 | 81450 |
70 | 69500 | 76500 | 83500 |
71 | 71350 | 78450 | 85550 |
72 | 73200 | 80400 | 87600 |
73 | 75050 | 82350 | 89650 |
74 | 76900 | 84300 | 91700 |
75 | 78750 | 86250 | 93750 |
76 | 80600 | 88200 | 95800 |
77 | 82450 | 90150 | 97850 |
78 | 84300 | 92100 | 99900 |
79 | 86150 | 94050 | 101950 |
80 | 88000 | 96000 | 104000 |
The Profit increases with the increasing room rent
Formula Sheet
Operating cost of the rooms per day | 60000 |
Rent price per room | 1950 |
Number of rooms rented | 60 |
Profit if 60 rooms are rented | =C6*C7-C4 |
Profit amount if the room rent is 1950 | |
Number of rooms rented | Profit |
60 | =C9 |
50 | =TABLE(,C7) |
51 | =TABLE(,C7) |
52 | =TABLE(,C7) |
53 | =TABLE(,C7) |
54 | =TABLE(,C7) |
55 | =TABLE(,C7) |
56 | =TABLE(,C7) |
57 | =TABLE(,C7) |
58 | =TABLE(,C7) |
59 | =TABLE(,C7) |
60 | =TABLE(,C7) |
61 | =TABLE(,C7) |
62 | =TABLE(,C7) |
63 | =TABLE(,C7) |
64 | =TABLE(,C7) |
65 | =TABLE(,C7) |
66 | =TABLE(,C7) |
67 | =TABLE(,C7) |
68 | =TABLE(,C7) |
69 | =TABLE(,C7) |
70 | =TABLE(,C7) |
71 | =TABLE(,C7) |
72 | =TABLE(,C7) |
73 | =TABLE(,C7) |
74 | =TABLE(,C7) |
75 | =TABLE(,C7) |
76 | =TABLE(,C7) |
77 | =TABLE(,C7) |
78 | =TABLE(,C7) |
79 | =TABLE(,C7) |
80 | =TABLE(,C7) |
Number of rooms rented | Profit for the varying room rent | ||
=C9 | 1850 | 1950 | 2050 |
50 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
51 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
52 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
53 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
54 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
55 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
56 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
57 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
58 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
59 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
60 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
61 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
62 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
63 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
64 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
65 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
66 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
67 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
68 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
69 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
70 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
71 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
72 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
73 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
74 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
75 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
76 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
77 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
78 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
79 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |
80 | =TABLE(C6,C7) | =TABLE(C6,C7) | =TABLE(C6,C7) |