Question

In: Advanced Math

Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is...

Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is an integer.

Solutions

Expert Solution

solution:-

which means

Suppose is an integer and and so that the fraction is in reduced form

Therefore,

Substituting in the above expression, we have

That is, is a root of

If is not an integer, then

Thus, where is a prime number

Substituting in we get

Multiplying both sides by we get

Thus, we have

That is,

As

So that

Thus,

But this contradicts the fact that

Therefore, we must have where

Which is to say that the rational root of must be an integer


Related Solutions

Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The polynomial f(x) factors in R[x] as the product of polynomials of degree 1 or 2. 2. The polynomial f(x) has n roots in C (counting multiplicity). In particular, there are non-negative integers r and s satisfying r+2s = n such that f(x) has r real roots and s pairs of non-real conjugate complex numbers as roots. 3. The polynomial f(x) factors in C[x] as...
Prove that 3 divides n^3 −n for all n ≥ 1.
Prove that 3 divides n^3 −n for all n ≥ 1.
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
For f: N x N -> N defined by f(m,n) = 2m-1(2n-1) a) Prove: f is...
For f: N x N -> N defined by f(m,n) = 2m-1(2n-1) a) Prove: f is 1-to-1 b) Prove: f is onto c) Prove {1, 2} x N is countable
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R)....
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R). Explain why {f(x) : f(0) = 1} is not.
Prove (a) that ψ ± = N (x ± iy)f(r) is an eigenfunction of L^2 and...
Prove (a) that ψ ± = N (x ± iy)f(r) is an eigenfunction of L^2 and Lz and set the eigenvalues corresponding. (b) Construct a wave function ψ_0(r) that is an eigenfunction of L^2 whose eigenvalue is the same as that of a), but whose eigenvalue Lz differs by a unit of the one found in a). (c) Find an eigenfunction of L^2 and Lx, analogous to those of parts a) and b), which have the same eigenvalue L^2 but...
Prove or disprove whether the function f: Z x Z -> Z x Z given by...
Prove or disprove whether the function f: Z x Z -> Z x Z given by f(x,y) = (2x+y, 3x-6y) is injective, surjective or both.
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is...
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is open in R^n with the Euclidean metric d(x,y) = sqrt((x1 - y1)^2+(x2 - y2)^2+...+(xn - yn)^2) 2) X is open in R^n with the taxicab metric d(x,y)= |x1 - y1|+|x2 - y2|+...+|xn - yn| 3) X is open in R^n with the square metric d(x,y)= max{|x1 - y1|,|x2 - y2|,...,|xn -y n|} (This can be proved by showing the 1 implies 2 implies 3)...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded on R then f is uniformly continuous on R. b) Show that g(x) = (sin(x4))/(1 + x2) is uniformly continuous on R. c) Show that the derivative g'(x) is not bounded on R.
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT