Question

In: Physics

Prove (a) that ψ ± = N (x ± iy)f(r) is an eigenfunction of L^2 and...

Prove
(a) that ψ ± = N (x ± iy)f(r) is an eigenfunction of L^2 and Lz and set the eigenvalues corresponding.
(b) Construct a wave function ψ_0(r) that is an eigenfunction of L^2 whose eigenvalue is the same as that of a), but whose eigenvalue Lz differs by a unit of the one found in a).
(c) Find an eigenfunction of L^2 and Lx, analogous to those of parts a) and b), which have the same eigenvalue L^2 but whose eigenvalue Lx is maximum
(d) If the wave function for a particle is that of part c), what are the probabilities of finding it in each of the states described by the wave functions ψ0, ψ + and ψ− of a) and b)?

thank you so much

Solutions

Expert Solution


Related Solutions

Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is...
Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is an integer.
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
R Code 2. Suppose X is a random variable with density f(x; ψ) = 2ψ-2 xI(0...
R Code 2. Suppose X is a random variable with density f(x; ψ) = 2ψ-2 xI(0 ≤ x ≤ ψ), where ψ > 0 is a parameter. (a) Draw a graph of the density when ψ = 3 in R. (b) Write a function called genTri that generates n independent realizations of X. The function should take the arguments n and psi and return a vector of n realizations. Make a histogram of n = 104 realizations and compare the...
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R)....
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R). Explain why {f(x) : f(0) = 1} is not.
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The polynomial f(x) factors in R[x] as the product of polynomials of degree 1 or 2. 2. The polynomial f(x) has n roots in C (counting multiplicity). In particular, there are non-negative integers r and s satisfying r+2s = n such that f(x) has r real roots and s pairs of non-real conjugate complex numbers as roots. 3. The polynomial f(x) factors in C[x] as...
For f: N x N -> N defined by f(m,n) = 2m-1(2n-1) a) Prove: f is...
For f: N x N -> N defined by f(m,n) = 2m-1(2n-1) a) Prove: f is 1-to-1 b) Prove: f is onto c) Prove {1, 2} x N is countable
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
If f(n) = 3n+2 and g(n) = n, then Prove that f(n) = O (g(n))
If f(n) = 3n+2 and g(n) = n, then Prove that f(n) = O (g(n))
prove by epsilon-delta definition that f:R->R given by f(x)=x^3 is continuous at x=2
prove by epsilon-delta definition that f:R->R given by f(x)=x^3 is continuous at x=2
Where is the function f(z) =|z|^2+I (x-iy) +1 differentiable at?
Where is the function f(z) =|z|^2+I (x-iy) +1 differentiable at?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT