Question

In: Advanced Math

Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...

Prove the following:

Let f(x) be a polynomial in R[x] of positive degree n.

1. The polynomial f(x) factors in R[x] as the product of polynomials of degree
1 or 2.

2. The polynomial f(x) has n roots in C (counting multiplicity). In particular,
there are non-negative integers r and s satisfying r+2s = n such that
f(x) has r real roots and s pairs of non-real conjugate complex numbers as
roots.

3. The polynomial f(x) factors in C[x] as the product of n degree-one polynomials.

Solutions

Expert Solution


Related Solutions

Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python.
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python. DONT use any inbuilt function, instead use looping in Python to solve the question. You should...
Let f be an irreducible polynomial of degree n over K, and let Σ be the...
Let f be an irreducible polynomial of degree n over K, and let Σ be the splitting field for f over K. Show that [Σ : K] divides n!.
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is...
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is open in R^n with the Euclidean metric d(x,y) = sqrt((x1 - y1)^2+(x2 - y2)^2+...+(xn - yn)^2) 2) X is open in R^n with the taxicab metric d(x,y)= |x1 - y1|+|x2 - y2|+...+|xn - yn| 3) X is open in R^n with the square metric d(x,y)= max{|x1 - y1|,|x2 - y2|,...,|xn -y n|} (This can be proved by showing the 1 implies 2 implies 3)...
Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is...
Suppose that f(x)=x^n+a_(n-1) x^(n-1)+⋯+a_0∈Z[x]. If r is rational and x-r divides f(x), prove that r is an integer.
Let f(x)∈F[x] be separable of degree n and let K be the splitting field of f(x)....
Let f(x)∈F[x] be separable of degree n and let K be the splitting field of f(x). Show that the order of Gal(K/F) divides n!.
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n...
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n ∈ N, if 0 < x < y, then x^n < y^n. (c) |x · y| = |x| · |y|
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f...
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f is injective, but not surjective. (b) Suppose g : R\{−1} → R\{a} is a function such that g(x) = x−1, where a ∈ R. Determine x+1 a, show that g is bijective and determine its inverse function.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT