In: Advanced Math
5.5 (a) Determine the roots of f (x) = −12 − 21x −
2.75x3 graphically. In addition, determine the first
root of the function with (b) bisection and (c) false
position.
For (b) and (c) use initial guesses of xl = −1 and xu = 0
and a stopping criterion of 1%.
5.6 Lo
Graphically:
Bisection method:
n | a | b | c | f(a) | f(b) | f(c ) | diff (c)<10^(-5) |
---|---|---|---|---|---|---|---|
0 | -1.00000 | 0.00000 | -0.50000 | 11.7500 | -12.000 | -1.1563 | |
1 | -1.00000 | -0.50000 | -0.75000 | 11.7500 | -1.1563 | 4.9102 | FALSE |
2 | -0.75000 | -0.50000 | -0.62500 | 4.9102 | -1.1563 | 1.7964 | FALSE |
3 | -0.62500 | -0.50000 | -0.56250 | 1.7964 | -1.1563 | 0.3019 | FALSE |
4 | -0.56250 | -0.50000 | -0.53125 | 0.3019 | -1.1563 | -0.4314 | FALSE |
5 | -0.56250 | -0.53125 | -0.54688 | 0.3019 | -0.4314 | -0.0658 | FALSE |
6 | -0.56250 | -0.54688 | -0.55469 | 0.3019 | -0.0658 | 0.1178 | TRUE |
Where we get the root
False position method:
n | a | b | c | f(a) | f(b) | f(c ) | rel error | Less than 1%? |
---|---|---|---|---|---|---|---|---|
0 | -1.00000 | 0.00000 | -0.50526 | 11.75000 | -12.00000 | -1.03475 | ||
1 | -1.00000 | -0.50526 | -0.54531 | 11.75000 | -1.03475 | -0.10267 | 0.07925 | FALSE |
2 | -1.00000 | -0.54531 | -0.54924 | 11.75000 | -0.10267 | -0.01023 | 0.00722 | TRUE |
Where we get the root
Hope this was helpful. Please do leave a positive rating if you liked this answer. Thanks and have a good day!