In: Statistics and Probability
using excel software If 84.3% of Canadian homes have Internet access, find the probability that in a random sample of 15 Canadians that:
a. Exactly 13 have Internet access.
b. Between 12 and 14, inclusive, have Internet access.
c. At least 13 have Internet access.
d. At most 13 have Internet access.
BIONOMIAL DISTRIBUTION
pmf of B.D is = f ( k ) = ( n k ) p^k * ( 1- p) ^ n-k
where
k = number of successes in trials
n = is the number of independent trials
p = probability of success on each trial
I.
mean = np
where
n = total number of repetitions experiment is executed
p = success probability
mean = 15 * 0.843
= 12.645
II.
variance = npq
where
n = total number of repetitions experiment is executed
p = success probability
q = failure probability
variance = 15 * 0.843 * 0.157
= 1.9853
III.
standard deviation = sqrt( variance ) = sqrt(1.9853)
=1.409
a.
probability that exactly 13 have internet access
P( X = 13 ) = ( 15 13 ) * ( 0.843^13) * ( 1 - 0.843 )^2
= 0.281
b.
probability that between 12 and 14 inclusive have internet
access
To find P(a < = Z < = b) = F(b) - F(a)
P( X < 12) = P(X=11) + P(X=10) + P(X=9) + P(X=8) + P(X=7) +
P(X=6) + P(X=5) + P(X=4) + P(X=3) + P(X=2)
= ( 15 11 ) * 0.843^11 * ( 1- 0.843 ) ^4 + ( 15 10 ) * 0.843^10 * (
1- 0.843 ) ^5 + ( 15 9 ) * 0.843^9 * ( 1- 0.843 ) ^6 + ( 15 8 ) *
0.843^8 * ( 1- 0.843 ) ^7 + ( 15 7 ) * 0.843^7 * ( 1- 0.843 ) ^8 +
( 15 6 ) * 0.843^6 * ( 1- 0.843 ) ^9 + ( 15 5 ) * 0.843^5 * ( 1-
0.843 ) ^10 + ( 15 4 ) * 0.843^4 * ( 1- 0.843 ) ^11 + ( 15 3 ) *
0.843^3 * ( 1- 0.843 ) ^12 + ( 15 2 ) * 0.843^2 * ( 1- 0.843 )
^13
= 0.1994
P( X < 14) = P(X=13) + P(X=12) + P(X=11) + P(X=10) + P(X=9) +
P(X=8) + P(X=7) + P(X=6) + P(X=5) + P(X=4)
= ( 15 13 ) * 0.843^13 * ( 1- 0.843 ) ^2 + ( 15 12 ) * 0.843^12 * (
1- 0.843 ) ^3 + ( 15 11 ) * 0.843^11 * ( 1- 0.843 ) ^4 + ( 15 10 )
* 0.843^10 * ( 1- 0.843 ) ^5 + ( 15 9 ) * 0.843^9 * ( 1- 0.843 ) ^6
+ ( 15 8 ) * 0.843^8 * ( 1- 0.843 ) ^7 + ( 15 7 ) * 0.843^7 * ( 1-
0.843 ) ^8 + ( 15 6 ) * 0.843^6 * ( 1- 0.843 ) ^9 + ( 15 5 ) *
0.843^5 * ( 1- 0.843 ) ^10 + ( 15 4 ) * 0.843^4 * ( 1- 0.843 )
^11
= 0.7073
P(12 < X < 14) = 0.7073-0.1994 =0.5079
c.
probability that at least 13 have internet access
P( X < 13) = P(X=12) + P(X=11) + P(X=10) + P(X=9) + P(X=8) +
P(X=7) + P(X=6) + P(X=5) + P(X=4) + P(X=3) +
= ( 15 12 ) * 0.843^12 * ( 1- 0.843 ) ^3 + ( 15 11 ) * 0.843^11 * (
1- 0.843 ) ^4 + ( 15 10 ) * 0.843^10 * ( 1- 0.843 ) ^5 + ( 15 9 ) *
0.843^9 * ( 1- 0.843 ) ^6 + ( 15 8 ) * 0.843^8 * ( 1- 0.843 ) ^7 +
( 15 7 ) * 0.843^7 * ( 1- 0.843 ) ^8 + ( 15 6 ) * 0.843^6 * ( 1-
0.843 ) ^9 + ( 15 5 ) * 0.843^5 * ( 1- 0.843 ) ^10 + ( 15 4 ) *
0.843^4 * ( 1- 0.843 ) ^11 + ( 15 3 ) * 0.843^3 * ( 1- 0.843 )
^12
= 0.4262
P( X > = 13 ) = 1 - P( X < 13) = 0.5738
d.
probability that atmost 13 have internet access
P( X < = 13) = P(X=13) + P(X=12) + P(X=11) + P(X=10) + P(X=9) +
P(X=8) + P(X=7) + P(X=6) + P(X=5) + P(X=4) + P(X=3)
= ( 15 13 ) * 0.843^13 * ( 1- 0.843 ) ^2 + ( 15 12 ) * 0.843^12 * (
1- 0.843 ) ^3 + ( 15 11 ) * 0.843^11 * ( 1- 0.843 ) ^4 + ( 15 10 )
* 0.843^10 * ( 1- 0.843 ) ^5 + ( 15 9 ) * 0.843^9 * ( 1- 0.843 ) ^6
+ ( 15 8 ) * 0.843^8 * ( 1- 0.843 ) ^7 + ( 15 7 ) * 0.843^7 * ( 1-
0.843 ) ^8 + ( 15 6 ) * 0.843^6 * ( 1- 0.843 ) ^9 + ( 15 5 ) *
0.843^5 * ( 1- 0.843 ) ^10 + ( 15 4 ) * 0.843^4 * ( 1- 0.843 ) ^11
+ ( 15 3 ) * 0.843^3 * ( 1- 0.843 ) ^12 +
= 0.7073