Question

In: Advanced Math

Let PN denote the vector space of all polynomials of degree N or less, with real...

Let PN denote the vector space of all polynomials of degree N or less, with real coefficients. Let the linear transformation: T: P3 --> P1 be the second derivative. Is T onto? Explain. Is T one-to-one? What is the Kernel of T? Find the standard matrix A for the linear transformation T. Let B= {x+1 , x-1 , x2+x , x3+x2 } be a basis for P3 ; and

F={ x+2 , x-3 } be a basis for P1 . Find A F<--B ( the matrix for T relative to the bases B and F).

Solutions

Expert Solution


Related Solutions

Let P denote the vector space of all polynomials with real coefficients and Pn be the...
Let P denote the vector space of all polynomials with real coefficients and Pn be the set of all polynomials in p with degree <= n. a) Show that Pn is a vector subspace of P. b) Show that {1,x,x2,...,xn} is a basis for Pn.
Let P2 be the vector space of all polynomials of degree less than or equal to...
Let P2 be the vector space of all polynomials of degree less than or equal to 2. (i) Show that {x + 1, x2 + x, x − 1} is a basis for P2. (ii) Define a transformation L from P2 into P2 by: L(f) = (xf)'    . In other words, L acts on the polynomial f(x) by first multiplying the function by x, then differentiating. The result is another polynomial in P2. Prove that L is a linear transformation....
Let V be the space of polynomials with real coefficients of degree at most n, and...
Let V be the space of polynomials with real coefficients of degree at most n, and let D be the differentiation operator. Find all eigenvectors of D on V.
3. We let ??(?) denote the set of all polynomials of degree at most n with...
3. We let ??(?) denote the set of all polynomials of degree at most n with real coefficients. Let ? = {? + ??3 |?, ? ??? ???? ???????}. Prove that T is a vector space using standard addition and scalar multiplication of polynomials in ?3(?).
Let V be the 3-dimensional vector space of all polynomials of order less than or equal...
Let V be the 3-dimensional vector space of all polynomials of order less than or equal to 2 with real coefficients. (a) Show that the function B: V ×V →R given by B(f,g) = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product and write out its Gram matrix with respect to the basis (1,t,t2). DO NOT COPY YOUR SOLUTION FROM OTHER SOLUTIONS
Verify all axioms that show that the set of second degree polynomials is a vector space....
Verify all axioms that show that the set of second degree polynomials is a vector space. What is the Rank? P2 = {p(x)P | p(x) = ax^2 + bx + c where a,b,c E R}
Problem 6. Let Pd (2, C) denote the vector space of C-polynomials in two variables, of...
Problem 6. Let Pd (2, C) denote the vector space of C-polynomials in two variables, of degree ≤ d. Define a linear map S : P2(2, C) → P2(C) by S(p) := p(z, z) (where z is a variable for the polynomials in P2(C)). (a) Prove that S is surjective and that Skew2(2, C) ⊂ ker(S). (b) Give an example of a polynomial in ker(S) \ Skew2(2, C). Hence write down a basis for ker(S).
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's...
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's s(t) so that s(0) = s(1) = 0. The inner product for two poly. s(t) and f(t) is def.: (s,f) = ([integral from 0 to 1] s(t)f(t)dt). I would like guidance finding (1) an orthogonal basis for V and (2) the projection for s(t) = 1 - t + 2t^2. Thank you!
4. Whether P3 or the space of the polynomials of degree less than or equal to...
4. Whether P3 or the space of the polynomials of degree less than or equal to 3 and consider T: P3 → P3, given by the derivation T(f) = f' . For example, T (−3x 2 + 5x - 10) = −6x + 5. (a) Prove that T is a linear transformation. (b) Determine ker (T). (c) Is the T transformation injective? Justify that. (d) The polynomial g (x) = 3x^2 + 1 belongs to the image? Justify that.
1. Show that the set of all polynomials of deg=2 is not a vector space over...
1. Show that the set of all polynomials of deg=2 is not a vector space over reals. can this be fixed, can we have a set of polynomials that is a vector space over reals? 2. Show that the set of 2x2 matrices with m_22 = 1 is not a vector space over reals. 3. Show that the set of infinitely-differentiable real functions is a a vector space under pointwise function addition, and pointwise scalar multiplication as defined in class,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT