Question

In: Advanced Math

Let V be the 3-dimensional vector space of all polynomials of order less than or equal...

Let V be the 3-dimensional vector space of all polynomials of order less than or equal to 2 with real coefficients.
(a) Show that the function B: V ×V →R given by B(f,g) = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product and write out its Gram matrix with respect to the basis (1,t,t2).

DO NOT COPY YOUR SOLUTION FROM OTHER SOLUTIONS

Solutions

Expert Solution


Related Solutions

Let P2 be the vector space of all polynomials of degree less than or equal to...
Let P2 be the vector space of all polynomials of degree less than or equal to 2. (i) Show that {x + 1, x2 + x, x − 1} is a basis for P2. (ii) Define a transformation L from P2 into P2 by: L(f) = (xf)'    . In other words, L acts on the polynomial f(x) by first multiplying the function by x, then differentiating. The result is another polynomial in P2. Prove that L is a linear transformation....
Let PN denote the vector space of all polynomials of degree N or less, with real...
Let PN denote the vector space of all polynomials of degree N or less, with real coefficients. Let the linear transformation: T: P3 --> P1 be the second derivative. Is T onto? Explain. Is T one-to-one? What is the Kernel of T? Find the standard matrix A for the linear transformation T. Let B= {x+1 , x-1 , x2+x , x3+x2 } be a basis for P3 ; and F={ x+2 , x-3 } be a basis for P1 ....
4. Whether P3 or the space of the polynomials of degree less than or equal to...
4. Whether P3 or the space of the polynomials of degree less than or equal to 3 and consider T: P3 → P3, given by the derivation T(f) = f' . For example, T (−3x 2 + 5x - 10) = −6x + 5. (a) Prove that T is a linear transformation. (b) Determine ker (T). (c) Is the T transformation injective? Justify that. (d) The polynomial g (x) = 3x^2 + 1 belongs to the image? Justify that.
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's...
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's s(t) so that s(0) = s(1) = 0. The inner product for two poly. s(t) and f(t) is def.: (s,f) = ([integral from 0 to 1] s(t)f(t)dt). I would like guidance finding (1) an orthogonal basis for V and (2) the projection for s(t) = 1 - t + 2t^2. Thank you!
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the...
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the set of zeros of the minimal polynomial of T is exactly the same as the set of the eigenvalues of T.
Let P denote the vector space of all polynomials with real coefficients and Pn be the...
Let P denote the vector space of all polynomials with real coefficients and Pn be the set of all polynomials in p with degree <= n. a) Show that Pn is a vector subspace of P. b) Show that {1,x,x2,...,xn} is a basis for Pn.
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that...
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that T is diagonalizable if and only if for every λ ∈ C, we have N(T − λIV ) = N((T − λIV )2).
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim...
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim Null T = 3, dimNullT2 =6. Prove that T does not have a square root; i.e. there does not exist any S ∈ L (V) such that S2 = T.
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S...
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S be in- vertible. Prove λ ∈ C is an eigenvalue of T if and only if λ is an eigenvalue of STS−1. Give a description of the set of eigenvectors of STS−1 associated to an eigenvalue λ in terms of the eigenvectors of T associated to λ. Show that there exist square matrices A, B that have the same eigenvalues, but aren’t similar. Hint:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT