Question

In: Advanced Math

Let F be a field. (a) Prove that the polynomials a(x, y) = x^2 − y^2,...

Let F be a field.

  1. (a) Prove that the polynomials a(x, y) = x^2 − y^2, b(x, y) = 2xy and c(x, y) = x^2 + y^2 in F[x, y] form a Pythagorean triple. That is, a^2 + b^2 = c^2. Use this fact to explain how to generate right triangles with integer side lengths.

  2. (b) Prove that the polynomials a(x,y) = x^2 − y^2, b(x,y) = 2xy − y^2 and c(x,y) = x^2 − xy + y2 in F[x,y] satisfy the equation a^2 − ab + b^2 = c^2. Use this fact to explain how to generate triangles with integer side lengths containing

    an angle of π /3

  3. (c) Explain how to generate triangles with integer side lengths containing an angle of 2π / 3

Solutions

Expert Solution



Related Solutions

2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
Let F be a finite field. Prove that the multiplicative group F*,x) is cyclic.
Let F be a finite field. Prove that the multiplicative group F*,x) is cyclic.
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of...
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of the following expressions is meaningful. Which one? a) grad f x div F b) div(curl(grad f)) c) div(div F) d) curl(div(grad f)) e) grad(curl F)
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is...
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is a joint pdf. b. Find the correlation coefficient of X and Y.
Let x and y be integers. Prove that if x^2 + y^2 is a multiple of...
Let x and y be integers. Prove that if x^2 + y^2 is a multiple of 7, then x and y are both multiples of 7.
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and...
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and onto if and only if f[A^c] = (f[A])^c for every subset A of X. (prove both directions)
Prove Proposition 6.10 (Let f : X → Y and g : Y → Z be...
Prove Proposition 6.10 (Let f : X → Y and g : Y → Z be one to one and onto functions. Then g ◦ f : X → Z is one to one and onto; and (g ◦ f)−1 = f−1 ◦ g−1 ).
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
Let x, y ∈ Z. Prove that x ≡ y + 1 (mod 2) if and...
Let x, y ∈ Z. Prove that x ≡ y + 1 (mod 2) if and only if x ≡ y + 1 (mod 4) or x ≡ y + 3 (mod 4)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT