Study these definitions and prove or disprove the claims. (In
all cases, n ∈ N.)
Definition. f(n)→∞ifforanyC>0,thereisnC
suchthatforalln≥nC,f(n)≥C.Definition.
f(n)→aifforanyε>0,thereisnε suchthatforalln≥nε,|f(n)−a|≤ε.
(a) f(n)=(2n2 +3)/(n+1). (i)f(n)→∞. (ii)f(n)→1. (iii)f(n)→2.
(b) f(n)=(n+3)/(n+1). (i)f(n)→∞. (ii)f(n)→1. (iii)f(n)→2.
(c) f(n) = nsin2(1nπ). (i) f(n) → ∞. (ii) f(n) → 1. (iii) f(n) →
2.