Question

In: Statistics and Probability

Two independent samples have been selected, 67 observations from population 1 and 94 observations from population...

Two independent samples have been selected, 67 observations from population 1 and 94 observations from population 2. The sample means have been calculated to be x¯1 = 9.9 and x¯2 = 10.2. From previous experience with these populations, it is known that the variances are σ21= 39 and σ22 = 38

(a) σ(x¯1−x¯2).
answer: _____

(b)    Determine the rejection region for the test of H0:(μ1−μ2)=2.94 and Ha:(μ1−μ2)>2.94 . Use α=0.02
z > : _____

(c)    Compute the test statistic.
z=

(d)    Construct a 98 % confidence interval for (μ1−μ2).
≤(μ1−μ2)≤ : ______

Solutions

Expert Solution

a)

(1 - 2) = sqrt [ 21 / n1 + 22 / n2 ]

= sqrt [ 39 / 67 + 38 / 94 ]

= 0.9931

b)

For right tailed test,

Rejection region = Reject H0 if z > 2.054 (Critical value calculated from Z table for 0.02 significance level)

c)

Test statistics z = (1 - 2) - 0 / (1 - 2)

= (9.9 - 10.2 ) / 0.9931

= -0.30

d)

98% Ci is

(1 - 2) - Z/2 * (1 - 2) < 1 - 2 < (1 - 2) + Z/2 * (1 - 2)

( 9.9 - 10.2) - 2.054 * 0.9931 < 1 - 2 < ( 9.9 - 10.2) + 2.054 * 0.9931

-2.34 <  1 - 2 < 1.74

98% CI is ( -2.34 , 1.74 )


Related Solutions

1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 22 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.08. (a) The test statistic is____ (b) The P-value is ____ (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
In order to compare the means of two populations, independent random samples of 234 observations are selected from each population, with the following results:
  In order to compare the means of two populations, independent random samples of 234 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯¯¯1=0x¯1=0 x¯¯¯2=4x¯2=4 s1=145s1=145 s2=100s2=100 (a)    Use a 99 % confidence interval to estimate the difference between the population means (μ1−μ2). _______ ≤ (μ1−μ2) ≤ ________ (b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.01α=0.01, give the following:    the test statistic z= The final conclusion is A. There is not...
In order to compare the means of two populations, independent random samples of 253 observations are selected from each population, with the following results:
  In order to compare the means of two populations, independent random samples of 253 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=1 x¯2=2 s1=190 s2=145 (a)    Use a 97 % confidence interval to estimate the difference between the population means (μ1−μ2). ≤(μ1−μ2)≤(b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.03, give the following:    the test statistic z= The final conclusion is A. There is not sufficient evidence to reject the...
17-14: The following sample data have been collected from independent samples from independent samples from two...
17-14: The following sample data have been collected from independent samples from independent samples from two populations. The claim is that the first population median will be larger than the median of the second population.             Sample 1                    Sample 2             4.4       2.6                   3.7       4.2             2.7       2.4                   3.5       5.2             1.0       2.0                   4.0       4.4             3.5       2.8                   4.9       4.3             2.8                               3.1 State the appropriate null and alternative hypotheses. Using the Mann-Whitney U-test, based on the sample data, what...
Assume that the samples are independent and that they have been randomly selected. Construct a​ 90%...
Assume that the samples are independent and that they have been randomly selected. Construct a​ 90% confidence interval for the difference between population proportions p1-p2. Round to three decimal places. x1=12​, n1=45 and x2=21​, n2=51 A. -0.301 <p1-p2< 0.011 B. 0.453 <p1−p2 < 0.079 C. 0.109 <p1−p2< 0.425 D. 0.081 <p1−p2< 0.453
Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively....
Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 104 successes, and sample 2 had 113 successes. Suppose that, for practical reasons, you know that p1 cannot be larger than p2. Test the appropriate hypothesis using α = 0.10. vH0: (p1 − p2) = 0 versus Ha: (p1 − p2) < 0 Find the test statistic. (Round your answer to two decimal places.) z =   Find the rejection region. (Round...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 36 46 Sample Mean 1.29 1.32 Sample Variance 0.0590 0.0530 Do the data present sufficient evidence to indicate that the mean for population 1 is smaller than the mean for population 2? Use one of the two methods of testing presented in this section. (Round your answer to two...
The following information is obtained from two independent samples selected from two populations. n 1 =...
The following information is obtained from two independent samples selected from two populations. n 1 = 250 x ¯ 1 = 5.72 σ 1 = 2.78 n 2 = 290 x ¯ 2 = 4.43 σ 2 = 1.21 Construct a 98 % confidence interval for μ 1 - μ 2 . Round your answers to two decimal places. The difference between the two population means is :
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT