Question

In: Statistics and Probability

1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...

1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 22 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.08.

(a) The test statistic is____

(b) The P-value is ____

(c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.

Solutions

Expert Solution

We have given for the example              
              
x1=33          
n1=60          
              
x2=22          
n2=60          
Level of significance=   0.08          
Estimate for sample proportion 1=
              
Estimate for sample proportion 2=

              
Pooled proportion =
              
a)

Z test statistic for two proportions.


=2.02  

b) P value is = 0.0439.............................by using Z table or by using =2*(1-NORMSDIST(2.02))

P value is 0.0439 < 0.08

(c)  A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0.
              


Related Solutions

Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively....
Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 104 successes, and sample 2 had 113 successes. Suppose that, for practical reasons, you know that p1 cannot be larger than p2. Test the appropriate hypothesis using α = 0.10. vH0: (p1 − p2) = 0 versus Ha: (p1 − p2) < 0 Find the test statistic. (Round your answer to two decimal places.) z =   Find the rejection region. (Round...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) _______ to _______/ (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.) independent random samples symmetrical distributions for...
In order to compare the means of two populations, independent random samples are selected from each...
In order to compare the means of two populations, independent random samples are selected from each population, with the results shown in the table below. Use these data to construct a 98% confidence interval for the difference in the two population means. Sample 1 Sample 2 Sample size 500 400 Sample mean 5,280 5,240 Sample standard dev. 150 200
In order to compare the means of two populations, independent random samples of 234 observations are selected from each population, with the following results:
  In order to compare the means of two populations, independent random samples of 234 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯¯¯1=0x¯1=0 x¯¯¯2=4x¯2=4 s1=145s1=145 s2=100s2=100 (a)    Use a 99 % confidence interval to estimate the difference between the population means (μ1−μ2). _______ ≤ (μ1−μ2) ≤ ________ (b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.01α=0.01, give the following:    the test statistic z= The final conclusion is A. There is not...
In order to compare the means of two populations, independent random samples of 253 observations are selected from each population, with the following results:
  In order to compare the means of two populations, independent random samples of 253 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=1 x¯2=2 s1=190 s2=145 (a)    Use a 97 % confidence interval to estimate the difference between the population means (μ1−μ2). ≤(μ1−μ2)≤(b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.03, give the following:    the test statistic z= The final conclusion is A. There is not sufficient evidence to reject the...
You are given two independent random samples from two populations. For Sample #1, there are 60...
You are given two independent random samples from two populations. For Sample #1, there are 60 observations, the sample mean is 33.8 and you are given that the populationstandard deviation is 5.5 For Sample #2, there are 35 observations, the sample mean is 31.8 and you are given that the populationstandard deviation is 4.1 You are asked to test the null hypothesis that the two population have the same mean (the difference in population means is 0). What is the...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 36 46 Sample Mean 1.29 1.32 Sample Variance 0.0590 0.0530 Do the data present sufficient evidence to indicate that the mean for population 1 is smaller than the mean for population 2? Use one of the two methods of testing presented in this section. (Round your answer to two...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=37,n2=44,x¯1=58.9,x¯2=74.7,s1=5.5s2=10.1 n 1 =37, x ¯ 1 =58.9, s 1 =5.5 n 2 =44, x ¯ 2 =74.7, s 2 =10.1 Find a 95.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances. Confidence Interval
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT