Question

In: Statistics and Probability

Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively....

Independent random samples of 180 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 104 successes, and sample 2 had 113 successes.

Suppose that, for practical reasons, you know that

p1

cannot be larger than

p2.

Test the appropriate hypothesis using α = 0.10.

vH0: (p1 − p2) = 0 versus Ha: (p1 − p2) < 0

Find the test statistic. (Round your answer to two decimal places.)

z =  

Find the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the unused region.)

z>?

z<?

Solutions

Expert Solution


Related Solutions

Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) _______ to _______/ (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.) independent random samples symmetrical distributions for...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 22 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.08. (a) The test statistic is____ (b) The P-value is ____ (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial...
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial populations 1 and 2, and x1 = 335 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.)
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial...
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) to (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.)nq̂ > 5 for samples from both populationssymmetrical...
1. Independent random samples of n1 = 200 and n2 = 200 observations were randomly selected...
1. Independent random samples of n1 = 200 and n2 = 200 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 116 successes, and sample 2 had 122 successes. a) Calculate the standard error of the difference in the two sample proportions, (p̂1 − p̂2). Make sure to use the pooled estimate for the common value of p. (Round your answer to four decimal places.) b) Critical value approach: Find the rejection region when α...
3. Independent random samples of n1 = 16 and n2 = 13 observations were selected from...
3. Independent random samples of n1 = 16 and n2 = 13 observations were selected from two normal populations with equal variances. The sample means and variances are shown below: Population 1 Population 2 Sample size 16 13 Sample mean 34.6 32.2 Sample variance 4.0 4.84 a) Suppose you wish to test if there is difference between the population means with significance level of α = 0.05. State the null and alternative hypotheses that you use for the test. b)...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and...
Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here. Sample 1 Sample 2 Sample Size 36 46 Sample Mean 1.29 1.32 Sample Variance 0.0590 0.0530 Do the data present sufficient evidence to indicate that the mean for population 1 is smaller than the mean for population 2? Use one of the two methods of testing presented in this section. (Round your answer to two...
The following observations are from two independent random samples, drawn from normally distributed populations. Sample 1...
The following observations are from two independent random samples, drawn from normally distributed populations. Sample 1 [66.73, 66.8, 75.06, 58.09, 54.64, 52.83] Sample 2 [66.71, 68.17, 66.22, 66.8, 68.81] Test the null hypothesis H0:σ21=σ22 against the alternative hypothesis HA:σ21≠σ22. a) Using the larger sample variance in the numerator, calculate the F test statistic. Round your response to at least 3 decimal places.     b) The p-value falls within which one of the following ranges: p-value > 0.50 0.10 < p-value...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT