Question

In: Statistics and Probability

The following information is obtained from two independent samples selected from two populations. n 1 =...

The following information is obtained from two independent samples selected from two populations. n 1 = 250 x ¯ 1 = 5.72 σ 1 = 2.78 n 2 = 290 x ¯ 2 = 4.43 σ 2 = 1.21 Construct a 98 % confidence interval for μ 1 - μ 2 . Round your answers to two decimal places.

The difference between the two population means is :

Solutions

Expert Solution


Related Solutions

The following information was obtained from two independent samples selected from two normally distributed populations with...
The following information was obtained from two independent samples selected from two normally distributed populations with unknown but equal standard deviations. n1=33;    x1¯=14.46;    s1=15.07. n2=23;    x2¯=−4.75;    s2=14.65. Find a point estimate and a 97.5% confidence interval for μ1−μ2. For the following, round all answers to no fewer than 4 decimal places. The point estimate of μ1−μ2 is: Answer The lower limit of the confidence interval is: Answer The upper limit of the confidence interval is: Answer The margin of error...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=37,n2=44,x¯1=58.9,x¯2=74.7,s1=5.5s2=10.1 n 1 =37, x ¯ 1 =58.9, s 1 =5.5 n 2 =44, x ¯ 2 =74.7, s 2 =10.1 Find a 95.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances. Confidence Interval
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=48,x¯1=52.5,x¯2=77.5,s1=5s2=11 Find a 97.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
Two independent samples are drawn from two populations, and the following information is provided.                 Sample...
Two independent samples are drawn from two populations, and the following information is provided.                 Sample 1              Sample 2 n/x         34                           52                 55                           65 s              14                           18 We want to test the following hypotheses. H0: μ1 - μ2 ≥ 0 Ha: μ1 - μ2 < 0             Determine the degrees of freedom.             Compute the test statistic.              At the 5% level, test the hypotheses.
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 22 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.08. (a) The test statistic is____ (b) The P-value is ____ (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.01 significance level to test the claim that the sample of home voltages and the sample of generator voltages are from populations with the same mean. If there is a statistically significant difference, does that difference have practical significance? Day    Home (volts)   Generator (volts) 1   123.7  ...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.05 significance level to test the claim that the sample of home voltages and the sample of generator voltages are from populations with the same mean. If there is a statistically significant​ difference, does that difference have practical​ significance? Day Home( volts) Generator( volts) Day Home (volts)...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A paint manufacturer wished to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 14 cans of type B were selected and applied to similar surfaces. The​ drying​ times,​ in​ hours, were recorded. The summary statistics are below. Type​ A:   x1 = 75.7 hours​,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT