Question

In: Statistics and Probability

Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and...

Independent random samples of 36 and 46 observations are drawn from two quantitative populations, 1 and 2, respectively. The sample data summary is shown here.

Sample 1 Sample 2
Sample Size 36 46
Sample Mean 1.29 1.32
Sample Variance 0.0590 0.0530

Do the data present sufficient evidence to indicate that the mean for population 1 is smaller than the mean for population 2? Use one of the two methods of testing presented in this section. (Round your answer to two decimal places.)

z =  

Solutions

Expert Solution

t = -0.57


Related Solutions

The following observations are from two independent random samples, drawn from normally distributed populations. Sample 1...
The following observations are from two independent random samples, drawn from normally distributed populations. Sample 1 [66.73, 66.8, 75.06, 58.09, 54.64, 52.83] Sample 2 [66.71, 68.17, 66.22, 66.8, 68.81] Test the null hypothesis H0:σ21=σ22 against the alternative hypothesis HA:σ21≠σ22. a) Using the larger sample variance in the numerator, calculate the F test statistic. Round your response to at least 3 decimal places.     b) The p-value falls within which one of the following ranges: p-value > 0.50 0.10 < p-value...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...
1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 22 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.08. (a) The test statistic is____ (b) The P-value is ____ (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population with the following results: Sample 1 Sample 2 Sample Mean = 5275 Sample Mean = 5240 s1 = 150 s2 = 200 To test the null hypothesis H0: µ1 - µ2 = 0 versus the alternative hypothesis Ha: µ1 - µ2 ╪ 0 versus the alternative hypothesis at the 0.05 level of significance, the most accurate statement is:
In order to compare the means of two populations, independent random samples of 424 observations are...
In order to compare the means of two populations, independent random samples of 424 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=5169 x¯2=5417 s1=135 s2=130 Use a 96% confidence interval to estimate the difference between the population means (μ1−μ2). ? ≤(μ1−μ2)≤ ? Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.04, give the following: the test statistic z = postive critical z score = negative critical z score = The...
In order to compare the means of two​ populations, independent random samples of 395 observations are...
In order to compare the means of two​ populations, independent random samples of 395 observations are selected from each​ population, with the results found in the table to the right. Complete parts a through e below. Sample 1 Sample 2 x1=5,294 x2=5,261 s1 =153 s2=197 a. Use a​ 95% confidence interval to estimate the difference between the population means left parenthesis mu 1 minus mu 2 right parenthesisμ1−μ2. Interpret the confidence interval.The confidence interval is ​ ​(Round to one decimal...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population with the following results: Sample 1 Sample 2 Sample Mean = 5275 Sample Mean = 5240 s1 = 150 s2 = 200 To test the null hypothesis H0: µ1 - µ2 = 0 versus the alternative hypothesis Ha: µ1 - µ2 ╪ 0 versus the alternative hypothesis at the 0.05 level of significance, the most accurate statement is The value...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population, with the results found in the table to the right. Complete parts a through e. Xbar 1: 5275 s1: 148 Xbar 2: 5240 s2: 210 a. use a 95% confidence interval to estimate the difference between the population means (u1 - u2). Interpret the confidence interval. b. test the null hypothesis H0: (u1 - u2) = 0 versus the alternative...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population, with the results found in the table to the right. Complete parts a through e. Sample 1 x1 = 5,265 s1 = 157 Sample 2 x2 = 5,232 s2 = 203 a. use a 95% confidence interval to estimate the difference between the population means (u1 - u2). Interpret the confidence interval. b. test the null hypothesis H0: (u1 -...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT