In: Statistics and Probability
Develop a 95% confidence interval estimate that the higher the price of the car, the higher the road test scores using Excel.
| Price ($) |
| 23,970.00 |
| 21,885.00 |
| 23,830.00 |
| 32,360.00 |
| 23,730.00 |
| 22,035.00 |
| 21,800.00 |
| 23,625.00 |
| 24,115.00 |
| 29,050.00 |
| 28,400.00 |
| 30,335.00 |
| 28,090.00 |
| 28,695.00 |
| 30,790.00 |
| 30,055.00 |
| 30,094.00 |
| 28,045.00 |
| 27,825.00 |
| 28,995.00 |
| Road-Test Score |
| 91 |
| 81 |
| 83 |
| 84 |
| 80 |
| 73 |
| 89 |
| 76 |
| 74 |
| 84 |
| 80 |
| 93 |
| 89 |
| 90 |
| 81 |
| 75 |
| 88 |
| 83 |
| 52 |
| 63 |
| Regression Statistics | ||||||
| Multiple R | 0.0488 | |||||
| R Square | 0.0024 | |||||
| Adjusted R Square | -0.0530 | |||||
| Standard Error | 10.1612 | |||||
| Observations | 20 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 4.44 | 4.44 | 0.04 | 0.8381 | |
| Residual | 18 | 1858.51 | 103.25 | |||
| Total | 19 | 1862.95 | ||||
| Coefficients | Standard Error | t Stat | P-value | lower 95% | upper 95% | |
| Intercept | 76.6002 | 18.713 | 4.093 | 0.0007 | 37.2857 | 115.91 |
| price | 0.0001 | 0.001 | 0.207 | 0.5809 | -0.0013 | 0.0016 |
------------------
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.101 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
10.16124 /√ 216330077.20
= 0.001
margin of error ,E= t*std error = 2.101
* 0.001 = 0.001
estimated slope , ß^ = 0.0001
lower confidence limit = estimated slope - margin of error
= 0.0001 - 0.001
= -0.0013
upper confidence limit=estimated slope + margin of error
= 0.0001 + 0.001
= 0.0016