In: Statistics and Probability
Develop a 95% confidence interval estimate that the higher the price of the car, the higher the road test scores using Excel.
Price ($) |
23,970.00 |
21,885.00 |
23,830.00 |
32,360.00 |
23,730.00 |
22,035.00 |
21,800.00 |
23,625.00 |
24,115.00 |
29,050.00 |
28,400.00 |
30,335.00 |
28,090.00 |
28,695.00 |
30,790.00 |
30,055.00 |
30,094.00 |
28,045.00 |
27,825.00 |
28,995.00 |
Road-Test Score |
91 |
81 |
83 |
84 |
80 |
73 |
89 |
76 |
74 |
84 |
80 |
93 |
89 |
90 |
81 |
75 |
88 |
83 |
52 |
63 |
Regression Statistics | ||||||
Multiple R | 0.0488 | |||||
R Square | 0.0024 | |||||
Adjusted R Square | -0.0530 | |||||
Standard Error | 10.1612 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 4.44 | 4.44 | 0.04 | 0.8381 | |
Residual | 18 | 1858.51 | 103.25 | |||
Total | 19 | 1862.95 | ||||
Coefficients | Standard Error | t Stat | P-value | lower 95% | upper 95% | |
Intercept | 76.6002 | 18.713 | 4.093 | 0.0007 | 37.2857 | 115.91 |
price | 0.0001 | 0.001 | 0.207 | 0.5809 | -0.0013 | 0.0016 |
------------------
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.101 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
10.16124 /√ 216330077.20
= 0.001
margin of error ,E= t*std error = 2.101
* 0.001 = 0.001
estimated slope , ß^ = 0.0001
lower confidence limit = estimated slope - margin of error
= 0.0001 - 0.001
= -0.0013
upper confidence limit=estimated slope + margin of error
= 0.0001 + 0.001
= 0.0016