In: Statistics and Probability
Develop a 95% confidence interval estimate that the higher the price of the car, the higher the road test scores using Excel.
| Price ($) | 
| 23,970.00 | 
| 21,885.00 | 
| 23,830.00 | 
| 32,360.00 | 
| 23,730.00 | 
| 22,035.00 | 
| 21,800.00 | 
| 23,625.00 | 
| 24,115.00 | 
| 29,050.00 | 
| 28,400.00 | 
| 30,335.00 | 
| 28,090.00 | 
| 28,695.00 | 
| 30,790.00 | 
| 30,055.00 | 
| 30,094.00 | 
| 28,045.00 | 
| 27,825.00 | 
| 28,995.00 | 
| Road-Test Score | 
| 91 | 
| 81 | 
| 83 | 
| 84 | 
| 80 | 
| 73 | 
| 89 | 
| 76 | 
| 74 | 
| 84 | 
| 80 | 
| 93 | 
| 89 | 
| 90 | 
| 81 | 
| 75 | 
| 88 | 
| 83 | 
| 52 | 
| 63 | 
| Regression Statistics | ||||||
| Multiple R | 0.0488 | |||||
| R Square | 0.0024 | |||||
| Adjusted R Square | -0.0530 | |||||
| Standard Error | 10.1612 | |||||
| Observations | 20 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 4.44 | 4.44 | 0.04 | 0.8381 | |
| Residual | 18 | 1858.51 | 103.25 | |||
| Total | 19 | 1862.95 | ||||
| Coefficients | Standard Error | t Stat | P-value | lower 95% | upper 95% | |
| Intercept | 76.6002 | 18.713 | 4.093 | 0.0007 | 37.2857 | 115.91 | 
| price | 0.0001 | 0.001 | 0.207 | 0.5809 | -0.0013 | 0.0016 | 
------------------
confidence interval for slope      
           
α=   0.05      
       
t critical value=   t α/2 =   
2.101   [excel function: =t.inv.2t(α/2,df) ]  
   
estimated std error of slope = Se/√Sxx =   
10.16124   /√   216330077.20  
=   0.001
          
       
margin of error ,E= t*std error =    2.101  
*   0.001   =   0.001
estimated slope , ß^ =    0.0001  
           
          
       
          
       
lower confidence limit = estimated slope - margin of error
=   0.0001   -   0.001  
=   -0.0013
upper confidence limit=estimated slope + margin of error
=   0.0001   +   0.001  
=   0.0016