Question

In: Advanced Math

Suppose we define the relation R on the set of all people by the rule "a...

Suppose we define the relation R on the set of all people by the rule "a R b if and only if a is Facebook friends with b."

Is this relation reflexive? Is is symmetric? Is it transitive? Is it an equivalence relation?

Briefly but clearly justify your answers.

Solutions

Expert Solution

A relation R is called an equivalence relation if it is reflexive,asymmetric and transitive.


Related Solutions

Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0}...
Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0} by for all a , b E R*, a ~ b if and only if ab>0. Prove that ~ is an equivalence relation. Find the equivalence class [8]. How many distinct equivalence classes are there?
Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or...
Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) ∈ R if and only if a) a is taller than b. b) a and b were born on the same day.
On the set S of all real numbers, define a relation R = {(a, b):a ≤ b}. Show that R is transitive.
On the set S of all real numbers, define a relation R = {(a, b):a ≤ b}. Show that R is transitive.
Let R be the relation on the set of people given by aRb if a and...
Let R be the relation on the set of people given by aRb if a and b have at least one parent in common. Is R an equivalence relation? (Equivalence Relations and Partitions)
Suppose we define a relation on the set of natural numbers as follows. Two numbers are...
Suppose we define a relation on the set of natural numbers as follows. Two numbers are related iff they leave the same remainder when divided by 5. Is it an equivalence relation? If yes, prove it and write the equivalence classes. If no, give formal justification.
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R...
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R is an equivalence relation, that is, prove that it is reflexive, symmetric, and transitive. Determine the equivalence classes of this relation. What members are in the class [2]? How many members do the equivalence classes have? Do they all have the same number of members? How many equivalence classes are there? Question 2. Equivalence Relation 2 Consider the relation from last week defined as:...
Define Bergmann's rule and Allen's rule in relation to climate adaptation. What is one example of...
Define Bergmann's rule and Allen's rule in relation to climate adaptation. What is one example of an environmental factor that can lead to development of body-shape characteristics that deviate from those predicted by these two rules?
Define a relation S from R to R by saying that  if and only if (a) List...
Define a relation S from R to R by saying that  if and only if (a) List five different elements of S. (b) Prove that S is not a function.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT