Question

In: Advanced Math

Let R be a relation on the set of all integers such that aRb if and...

Let R be a relation on the set of all integers such that aRb if and only if 3a − 5b is even. Tell if R is an equivalence relation. Justify your answer. (Hint: 3b − 5a = 3a − 5b + 8b − 8a)

Solutions

Expert Solution

It is a simple proof by just remembering that even multiples of integers are even integers, and sums and differences of even integers are also even integers.

So, we have proved the relation R on integers to be REFLEXIVE, SYMMETRIC and TRANSITIVE.

Therefore, R is an equivalence relation on the set of integers.


Related Solutions

Let R be the relation on the set of people given by aRb if a and...
Let R be the relation on the set of people given by aRb if a and b have at least one parent in common. Is R an equivalence relation? (Equivalence Relations and Partitions)
Let R be the following relation on the set of all alive people in the world:...
Let R be the following relation on the set of all alive people in the world: x R y if and only if x and y have the same pair of biological parents. Prove that R is an equivalence relation.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Let R be a relation on a set that is reflexive and symmetric but not transitive?...
Let R be a relation on a set that is reflexive and symmetric but not transitive? Let R(x) = {y : x R y}. [Note that R(x) is the same as x / R except that R is not an equivalence relation in this case.] Does the set A = {R(x) : x ∈ A} always/sometimes/never form a partition of A? Prove that your answer is correct. Do not prove by examples.
Question: Consider the relation R on A defined by aRb iff 1mod4 = bmod4 a)Construct the...
Question: Consider the relation R on A defined by aRb iff 1mod4 = bmod4 a)Construct the diagraph for this relation b)show that R is an equivalence relation Part B: Now consider the relation R on A defined by aRb iff a divides b (Divides relation) c) Show that R is partial ordering d) Contruct the hasse diagram for this relation
let G be a simple graph. show that the relation R on the set of vertices...
let G be a simple graph. show that the relation R on the set of vertices of G such that URV if and only if there is an edge associated with (u,v) is a symmetric irreflexive relation on G
c) Let R be any ring and let ??(?) be the set of all n by...
c) Let R be any ring and let ??(?) be the set of all n by n matrices. Show that ??(?) is a ring with identity under standard rules for adding and multiplying matrices. Under what conditions is ??(?) commutative?
Let S be the set of all integers x > 6543 such that the decimal representation...
Let S be the set of all integers x > 6543 such that the decimal representation of x has distinct digits, none of which is equal to 7, 8, or 9. (The decimal representation does not have leading zeros.) Determine the size of the set S. (do not just write out all elements of S.)
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT