Question

In: Physics

A conducting rectangular loop of mass, M, resistance R, and dimensions w x l falls from...

A conducting rectangular loop of mass, M, resistance R, and dimensions w x l falls from rest into a magnetic field B. During the time interval before the top edge of the loop reaches the field, the loop approaches a terminal speed vt ​. Show that vt=MgR/B2w2

Solutions

Expert Solution

As the rectangular loop is moving from rest in to the magnetic field  

the area of the loop , changing in the magnetic field so that there will be change in magnetic flux through the loop so that from Faraday's law the induced emf , associated magnetic field develops in the loop

let the magnetic field (original) out of the page then the induced field is into the page and  

when ever the loop attains the terminal velocity the force acting on the loop is zero

that is the magnetic force and gravitational forces are equal

given mass M , dimensions are W X l  

field B

terminal velocity vt

flux is phi _B = B*A cos theta = B*l*W cos theta

from Faraday's law e = -d(phi)/dt

e = - d(B*l*W cos theta)/dt

e = B*W dl/dt

e = B*W vt

from Ohm's law V = I*R

I = V/R

I = B*W*vt /R

the force is F = IWB sin theta

F = (B*W*vt /R )(W*B)

F = B^2*W^2*vt /R

the gravitational force is F = mg

mg = B^2*W^2*vt /R

vt = mg*R /(B^2*W^2)

so the terminal velocity is vt = mg*R /(B^2*W^2)


Related Solutions

A rectangular coil with resistance R has N turns, each of length and width w as...
A rectangular coil with resistance R has N turns, each of length and width w as shown in Figure P31.29. The coil moves into a uniform magnetic field with constant velocity . What are the magnitude and direction of the total magnetic force on the coil for the following situations? (Use the following as necessary: N,B, w, v, and R.) Figure P31.29 (a) The coil enters the magnetic field. F =   [Direction?] (b) The coil moves within the field. F...
A circular wire loop of radius r = 0.25 m and resistance R = 11.1 Ω...
A circular wire loop of radius r = 0.25 m and resistance R = 11.1 Ω rotates about a shaft through its diameter at a constant rate of f = 5.8 Hz in a uniform B = 0.49-T magnetic field directed perpendicular to the rotation axis. The plane of the loop is perpendicular to the magnetic field at time t = 0. a) Find the expression for the time-dependent magnetic flux through the loop. Φ = b) Find the value...
A rectangular loop consists of 130 closely wrapped turns and has dimensions 0.400 m by 0.300...
A rectangular loop consists of 130 closely wrapped turns and has dimensions 0.400 m by 0.300 m. The loop is hinged along the y-axis, and the plane of the coil makes an angle of 30.0° with the x-axis (see figure below). What is the magnitude of the torque exerted on the loop by a uniform magnetic field of 0.792 T directed along the x-axis when the current in the windings has a value of 1.20 A in the direction shown?...
A rectangular swimming pool has dimensions of 25 m x 9 m and a depth of...
A rectangular swimming pool has dimensions of 25 m x 9 m and a depth of 1.8 m and is full to the brim with water. Determine a) the absolute pressure at the bottom of the pool, b) the total force on the bottom of the pool, and c) the absolute pressure at point P, a point on the side of the pool just near the bottom. (Worth 2 pts)
A rectangular loop has 17 turns with sides w=.03m and l=.06m. The current is 9A. What...
A rectangular loop has 17 turns with sides w=.03m and l=.06m. The current is 9A. What is the force on each side and the torque on the loop if the external field is 0.5 T and is directed: (a) parallel to the plane of the loop (B1) (along the positive x-axis)? (b) normal to the plane of the loop (B2) (into the paper)?
A rectangular coil with resistance R has N turns
A rectangular coil with resistance R has N turns, each of length l and width w as shown in Figure P20.25. The coil moves into a uniform magnetic field with constant velocity . What is the magnitude and direction of the total magnetic force on the coil during the following intervals? (Use N, B, w, l,v, and R as needed.)(a) as it enters the magnetic field(b) as it moves within the field(c) as it leaves the field
A long rectangular conducting loop of width 30 cm is partially in a region of a...
A long rectangular conducting loop of width 30 cm is partially in a region of a horizontal magnetic field of 1.74 T perpendicular to the loop, as shown in the figure below. The mass of the loop is 14 g, and its resistance is 0.17 . If the loop is released, what is its terminal velocity? Assume that the top of the loop stays in the magnetic field. (Hint: The terminal velocity occurs when the magnetic force on the induced...
A rectangular loop of wire with sides H = 27 cm and W = 74 cm...
A rectangular loop of wire with sides H = 27 cm and W = 74 cm carries current I2 = 0.187 A. An infinite straight wire, located a distance L = 25 cm from segment ad of the loop as shown, carries current I1 = 0.781 A in the positive y-direction. 1) What is Fad,x, the x-component of the force exerted by the infinite wire on segment ad of the loop? N You currently have 0 submissions for this question....
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R....
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track (between the ramp and the loop) with length 2R that has a kinetic friction coefficient of 0.5. From what height h must the mass be released to stay on the track? No figure. 1.5R 2.5R 3.5R 4.5R or 5.5R
A conducting single-turn circular loop with a total resistance of 7.50 Ω is placed in a...
A conducting single-turn circular loop with a total resistance of 7.50 Ω is placed in a time-varying magnetic field that produces a magnetic flux through the loop given by ΦB = a + bt2 − ct3, where a = 8.00 Wb, b = 15.5 Wb/s−2, and c = 7.50 Wb/s−3. ΦB is in webers, and t is in seconds. What is the maximum current induced in the loop during the time interval t = 0 to t = 1.55 s?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT