Question

In: Statistics and Probability

A manufacturer of potato chips would like to know whether its bag filling machine works correctly...

A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 428 gram setting. It is believed that the machine is underfilling or overfilling the bags. A 13 bag sample had a mean of 424 grams with a variance of 169. Assume the population is normally distributed. A level of significance of 0.01 will be used. Specify the type of hypothesis test.

Solutions

Expert Solution

Given:

Population mean (µ) = 428
Sample size(n) = 13
Sample mean = xbar = 424.

Sample variance =s^2 = 169
Sample standard deviation = S = 13


The claim statement is, "the machine is underfilling or overfilling the bag".
That is .


Hence, the claim statement goes under the alternative hypothesis.


Hence, the Null hypothesis is, H0: µ = 428
And the alternative hypothesis is,


Here, we have the sample standard deviation. So, we need to use the T-test for testing.
Now, let's find the test statistic.

That is, test statistic T = -1.1094
Degrees of freedom = n -1 = 13 - 1 = 12 .


Now, let's find the P-value.
For finding the P-value, we can use a technology like excel/Ti84 calculator or T table.
The following excel command is used to find the P-value.


= T.DIST.2T(Absolute value of Test statistic, Degrees of freedom)
= T.DIST.2T(1.1094 , 12 )
You will get, P-value = 0.2889955


We are given: Level of significance α = 0.01.


Following is the decision rule for making the decision.
If, P-value > α, then we fail to reject the null hypothesis.
If, P-value <= α, then we reject the null hypothesis.
Here, given α = 0.01
And P-value = 0.289
That is P-value > α.
Hence, we fail to reject the null hypothesis.


That is, there is not sufficient evidence to support the claim that the machine is underfilling or overfilling the bags.


Related Solutions

A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 409 gram setting. Based on a 21 bag sample where the mean is 417 grams and the standard deviation is 26, is there sufficient evidence at the 0.1 level that the bags are overfilled? Assume the population distribution is approximately normal. Step 1 of 5: State the null and alternative hypotheses. Step 2 of 5: Find the value of the test statistic....
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 410.0 gram setting. Based on a 46 bag sample where the mean is 408.0 grams, is there sufficient evidence at the 0.1 level that the bags are underfilled? Assume the standard deviation is known to be 20.0. Step one: Enter the hypotheses: H0: Ha: Step two: Enter the value of the z test statistic. Round your answer to two decimal places. Step...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 429.0 gram setting. It is believed that the machine is underfilling the bags. A 4040 bag sample had a mean of 425.0 grams. A level of significance of 0.02 will be used. Determine the decision rule. Assume the standard deviation is known to be 11.0. Enter the decision rule.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445-gram setting. It is believed that the machine is underfilling the bags. A 26 bag sample had a mean of 438 grams with a variance of 289. Assume the population is normally distributed. A level of significance of 0.010.01 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 444 gram setting. It is believed that the machine is underfilling the bags. A 39 bag sample had a mean of 436 grams. Assume the population standard deviation is known to be 19. Is there sufficient evidence at the 0.01 level that the bags are underfilled?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445 gram setting. It is believed that the machine is underfilling the bags. A 34 bag sample had a mean of 443 grams. Assume the population standard deviation is known to be 30. A level of significance of 0.05 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 443443 gram setting. It is believed that the machine is underfilling the bags. A 1515 bag sample had a mean of 434434 grams with a standard deviation of 1717. A level of significance of 0.10.1 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places. Reject...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 430 gram setting. It is believed that the machine is underfilling the bags. A 24 bag sample had a mean of 427 grams with a standard deviation of 15. Assume the population is normally distributed. A level of significance of 0.02 will be used. Specify the type of hypothesis test.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 410.0 gram setting. It is believed that the machine is underfilling the bags. A 35 bag sample had a mean of 404.0 grams. A level of significance of 0.01 will be used. Is there sufficient evidence to support the claim that the bags are underfilled? Assume the standard deviation is known to be 28.0. What is the conclusion?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 406 gram setting. It is believed that the machine is underfilling the bags. A 42 bag sample had a mean of 397 grams. Assume the population standard deviation is known to be 27. Is there sufficient evidence at the 0.02 level that the bags are underfilled?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT