Question

In: Advanced Math

Let A be a finite set. Say A has five elements. (a) Can you find a...

Let A be a finite set. Say A has five elements.

(a) Can you find a function g : A → A which is injective but not surjective? Explain your answer.

(b) Can you find a function f : A → A which is surjective but not injective? Explain your answer

Solutions

Expert Solution


Related Solutions

Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let A be a set with m elements and B a set of n elements, where...
Let A be a set with m elements and B a set of n elements, where m; n are positive integers. Find the number of one-to-one functions from A to B.
Let E be an extension field of a finite field F, where F has q elements....
Let E be an extension field of a finite field F, where F has q elements. Let a in E be an element which is algebraic over F with degree n. Show that F(a) has q^n elements. Please provide an unique answer and motivate all steps carefully. I also prefer that the solution is provided as written notes.
Let X be an uncountable set, let τf be the finite complement topology on X, and...
Let X be an uncountable set, let τf be the finite complement topology on X, and let τc be the countable complement topology; namely, we have τf ={U⊂X : X\U is finite}∪{∅}, τc={U⊂X : X\U is countable}∪{∅}, where “countable” means that the set is either finite or countably infinite (in bijection with the natural numbers). (a) What are the compact subspaces of (X, τf )? Are all compact subspaces closed in (X, τf )? (b) What are the compact subspaces...
Let S be a set and P be a property of the elements of the set,...
Let S be a set and P be a property of the elements of the set, such that each element either has property P or not. For example, maybe S is the set of your classmates, and P is "likes Japanese food." Then if s ∈ S is a classmate, he/she either likes Japanese food (so s has property P) or does not (so s does not have property P). Suppose Pr(s has property P) = p for a uniformly...
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
Let A be a set of real numbers. We say that A is an open set...
Let A be a set of real numbers. We say that A is an open set if for every x0 ∈ A there is some δ > 0 (which might depend on x0) such that (x0 − δ, x0 + δ) ⊆ A. Show that a set B of real numbers is closed if and only if B is the complement of some open set A
Let P be a partial order on a finite set X. Prove that there exists a...
Let P be a partial order on a finite set X. Prove that there exists a linear order L on X such that P ⊆ L. (Hint: Use the proof of the Hasse Diagram Theorem.) Do not use induction
We can find and sort the k largest elements of a set of size n in...
We can find and sort the k largest elements of a set of size n in Θ(n + k log k) worst-case time. Is this statement true?
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT