Question

In: Advanced Math

Let A be a finite set. Say A has five elements. (a) Can you find a...

Let A be a finite set. Say A has five elements.

(a) Can you find a function g : A → A which is injective but not surjective? Explain your answer.

(b) Can you find a function f : A → A which is surjective but not injective? Explain your answer

Solutions

Expert Solution


Related Solutions

Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let A be a set with m elements and B a set of n elements, where...
Let A be a set with m elements and B a set of n elements, where m; n are positive integers. Find the number of one-to-one functions from A to B.
Let E be an extension field of a finite field F, where F has q elements....
Let E be an extension field of a finite field F, where F has q elements. Let a in E be an element which is algebraic over F with degree n. Show that F(a) has q^n elements. Please provide an unique answer and motivate all steps carefully. I also prefer that the solution is provided as written notes.
Let S be a set and P be a property of the elements of the set,...
Let S be a set and P be a property of the elements of the set, such that each element either has property P or not. For example, maybe S is the set of your classmates, and P is "likes Japanese food." Then if s ∈ S is a classmate, he/she either likes Japanese food (so s has property P) or does not (so s does not have property P). Suppose Pr(s has property P) = p for a uniformly...
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
Let A be a set of real numbers. We say that A is an open set...
Let A be a set of real numbers. We say that A is an open set if for every x0 ∈ A there is some δ > 0 (which might depend on x0) such that (x0 − δ, x0 + δ) ⊆ A. Show that a set B of real numbers is closed if and only if B is the complement of some open set A
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let S be a non-empty set (finite or otherwise) and Σ the group of permutations on...
Let S be a non-empty set (finite or otherwise) and Σ the group of permutations on S. Suppose ∼ is an equivalence relation on S. Prove (a) {ρ ∈ Σ : x ∼ ρ(x) (∀x ∈ S)} is a subgroup of Σ. (b) The elements ρ ∈ Σ for which, for every x and y in S, ρ(x) ∼ ρ(y) if and only if x ∼ y is a subgroup of Σ.
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to...
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to be f(x1x2…xk)=x2x3…xkx1. That is, f takes the first bit of a string x and moves it to the end of x, so for example a string 100becomes 001; if |x|≤1, then f(x)=x Also, suppose that g:{0,1}∗→{0,1}∗ is a function such that g(x1…xk)=0x1…xk (that is, gg puts an extra 0 in front of the given string, so for example g(100)=0100. Everywhere in this question we...
Let X be a set containing infinitely many elements, and let d be a metrio on...
Let X be a set containing infinitely many elements, and let d be a metrio on X. Prove that X contains an open set U such that U and its complement Uc = X\U are both infinite
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT