Question

In: Advanced Math

Let P be a partial order on a finite set X. Prove that there exists a...

Let P be a partial order on a finite set X. Prove that there exists a linear order L on X such that P ⊆ L. (Hint: Use the proof of the Hasse Diagram Theorem.) Do not use induction

Solutions

Expert Solution


Related Solutions

If A is a set, write A={(x,x):x∈A}. Prove: If S is a strict partial order on...
If A is a set, write A={(x,x):x∈A}. Prove: If S is a strict partial order on A, then S∗=S∪A is a partial order on A .
Let F be a finite field. Prove that there exists an integer n≥1, such that n.1_F...
Let F be a finite field. Prove that there exists an integer n≥1, such that n.1_F = 0_F . Show further that the smallest positive integer with this property is a prime number.
Let X be an uncountable set, let τf be the finite complement topology on X, and...
Let X be an uncountable set, let τf be the finite complement topology on X, and let τc be the countable complement topology; namely, we have τf ={U⊂X : X\U is finite}∪{∅}, τc={U⊂X : X\U is countable}∪{∅}, where “countable” means that the set is either finite or countably infinite (in bijection with the natural numbers). (a) What are the compact subspaces of (X, τf )? Are all compact subspaces closed in (X, τf )? (b) What are the compact subspaces...
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
Prove or Disprove The set of all finite strings is undecidable. The set of all finite...
Prove or Disprove The set of all finite strings is undecidable. The set of all finite strings is recognizable
Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q...
Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q such that x < q < y. Strategy for solving the problem Show that there exists an n ∈ N+ such that 0 < 1/n < y - x. Letting A = {k : Z | k < ny}, where Z denotes the set of all integers, show that A is a non-empty subset of R with an upper bound in R. (Hint: Use...
Let F be a finite field. Prove that the multiplicative group F*,x) is cyclic.
Let F be a finite field. Prove that the multiplicative group F*,x) is cyclic.
abstract algebra Let G be a finite abelian group of order n Prove that if d...
abstract algebra Let G be a finite abelian group of order n Prove that if d is a positive divisor of n, then G has a subgroup of order d.
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there...
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there exists a point x_0 ∈ S which is “closest” to p. That is, prove that there exists x0 ∈ S such that |x_0 − p| is minimal.
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection)...
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection) is a ring. Find a non-trivial ideal of P(X).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT