Question

In: Advanced Math

Let X be the set of all subsets of R whose complement is a finite set...

Let X be the set of all subsets of R whose complement is a finite set in R:

X = {O ⊂ R | R − O is finite} ∪ {∅}

a) Show that T is a topological structure no R.

b) Prove that (R, X) is connected.

c) Prove that (R, X) is compact.

Solutions

Expert Solution


Related Solutions

Let f : [0, 1] → R and suppose that, for all finite subsets of [0,...
Let f : [0, 1] → R and suppose that, for all finite subsets of [0, 1], 0 ≤ x1 < x2 < · · · < xn ≤ 1, we have |f(x1) + f(x2) + · · · + f(xn)| ≤ 1. Let S := {x ∈ [0, 1] : f(x) ̸= 0}. Show that S is countable
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Let X be a set and A a σ-algebra of subsets of X. (a) What does...
Let X be a set and A a σ-algebra of subsets of X. (a) What does it mean for a function f : X → R to be measurable? [2%] (b) If f and g are measurable and α, β ∈ R show that the function αf + βg is also measurable. [7%] (c) (i) Suppose that f is a measurable function. Is |f| measurable? (Give a proof or a counterexample.) [3%] (ii) Suppose that |f| is a measurable function....
Q3 [17% ] Let X be a set and A a σ-algebra of subsets of X....
Q3 [17% ] Let X be a set and A a σ-algebra of subsets of X. (a) What does it mean for a function f : X → R to be measurable? [2%] If f and g are measurable, show that the function f − g is also measurable. [6%] (b) Let (fn) be a sequence of measurable functions. (i) What does it mean to say that (fn) converges pointwise to a function f? [2%] (ii) If (fn) converges pointwise...
X is infinite set with the finite complement topology. X is Hausdorff ??? why??? please thank...
X is infinite set with the finite complement topology. X is Hausdorff ??? why??? please thank U
Let Ω be any set and let F be the collection of all subsets of Ω...
Let Ω be any set and let F be the collection of all subsets of Ω that are either countable or have a countable complement. (Recall that a set is countable if it is either finite or can be placed in one-to-one correspondence with the natural numbers N = {1, 2, . . .}.) (a) Show that F is a σ-algebra. (b) Show that the set function given by μ(E)= 0 if E is countable ; μ(E) = ∞ otherwise...
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X...
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X is called a topology on the set X if the following properties are satisfied: (1) emptyset ∈ O and X ∈ O. (2) For all A,B ∈ O, we have A∩B ∈ O (stability under intersection). (3) For all index sets I, and for all collections {Ui}i∈I of elements of O (i.e., Ui ∈ O for all i ∈ I), we have U i∈I...
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Given the following subsets of R: A = R\Q = {x ∈ R|x not in Q}...
Given the following subsets of R: A = R\Q = {x ∈ R|x not in Q} B = {1, 2, 3, 4} C = (0, 1] D = (0, 1] ∪ [2, 3) ∪ (4, 5] ∪ [6, 7] ∪ {8} (a) Find the set of limit points for each subset when considered as subsets of RU (usual topology on R). (b) Find the set of limit points for each subset when considered as subsets of RRR (right-ray topology on...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT