Question

In: Advanced Math

Let X be an uncountable set, let τf be the finite complement topology on X, and...

Let X be an uncountable set, let τf be the finite complement topology on X, and let τc be the countable complement topology; namely, we have
τf ={U⊂X : X\U is finite}∪{∅},

τc={U⊂X : X\U is countable}∪{∅},

where “countable” means that the set is either finite or countably infinite (in bijection with the natural numbers).

(a) What are the compact subspaces of (X, τf )? Are all compact subspaces closed in (X, τf )?

(b) What are the compact subspaces of (X,τc)? Are all compact subspaces closed in (X,τc)?

(c) What have we learned about the nature of compact subspaces when (X,τ) is not Hausdorff ?

Solutions

Expert Solution


Related Solutions

X is infinite set with the finite complement topology. X is Hausdorff ??? why??? please thank...
X is infinite set with the finite complement topology. X is Hausdorff ??? why??? please thank U
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
Let X be a non-degenerate ordered set with the order topology. A non-degenerate set is a...
Let X be a non-degenerate ordered set with the order topology. A non-degenerate set is a set with more than one element. Show the following: (1) every open interval is open, (2) every closed interval is closed, (3) every open ray is open, and (4) every closed ray is closed. Please note: Its a topology question.
Exercise 31: (General definition of a topology) Let X be a set and O ⊂ P(X),...
Exercise 31: (General definition of a topology) Let X be a set and O ⊂ P(X), where P(X) := {U ⊂ X}. O is a topology on X iff O satisfies (i) X∈O and ∅∈O; (ii) ?i∈I Ui ∈ O where Ui ∈ O for all i ∈ I and I is an arbitrary index set; (iii) ?i∈J Ui ∈ O where Ui ∈ O for all i ∈ J and J is a finite index set. In a general...
Let P be a partial order on a finite set X. Prove that there exists a...
Let P be a partial order on a finite set X. Prove that there exists a linear order L on X such that P ⊆ L. (Hint: Use the proof of the Hasse Diagram Theorem.) Do not use induction
5. For each set below, say whether it is finite, countably infinite, or uncountable. Justify your...
5. For each set below, say whether it is finite, countably infinite, or uncountable. Justify your answer in each case, giving a brief reason rather than an actual proof. a. The points along the circumference of a unit circle. (Uncountable because across the unit circle because points are one-to-one correspondence to real numbers) so they are uncountable b. The carbon atoms in a single page of the textbook. ("Finite", since we are able to count the number of atoms in...
Cardinality State whether the following sets are finite, countable infinite or uncountable. Set of positive perfect...
Cardinality State whether the following sets are finite, countable infinite or uncountable. Set of positive perfect squares. Is it finite, countable infinite or uncountable? If it is countably infinite, set up the bijection between ℤ+. Negative numbers greater than or equal to -5. Is it finite, countable infinite or uncountable? If it is countably infinite, set up the bijection between ℤ+. Odd positive integers. Is it finite, countable infinite or uncountable? If it is countably infinite, set up the bijection...
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct...
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct equivalence classes, and the one with the smallest number of equivalence classes.
Let X = NN endowed with the product topology. For x ∈ X denote x by...
Let X = NN endowed with the product topology. For x ∈ X denote x by (x1, x2, x3, . . .). (a) Decide if the function given by d : X × X → R is a metric on X where, d(x, x) = 0 and if x is not equal to y then d(x, y) = 1/n where n is the least value for which xn is not equal to yn. Prove your answer. (b) Show that no...
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT