In: Physics
The figure below shows a stream of water in steady flow from a
kitchen faucet. At the faucet, the diameter of the stream is 0.960
cm. The stream fills a 125-cm3 container in 16.0 s. Find
the diameter of the stream 13.0 cm below the opening of the
faucet.
Solution :
Here, Flow rate of water (Q) = 125 cm3 / 16 s =
7.8125 cm3/s
Volume flow rate = v1 A1
Q = v1 (πd2/4)
v1 = Q / (πd2/4)
v1 = { 4(7.8125 cm3/s) } / {π(0.960 cm)2}
v1 = 10.79 cm/s
The velocity of the water at the faucet : v1 = 10.79
cm/s = 0.1079 m/s
Now, the velocity of the water 13.0 cm ( = 0.13 m) below the faucet
is :
Using formula : (v2)2 =
(v1)2 + 2ad
(v2)2 = (0.1079 m/s)2 + 2(9.81 m/s2)(0.13 m)
(v2)2 = 2.56
v2 = 1.6007 m/s = 160.07 cm/s
Now, Volume flow rate remains constant.
Thus : Volume flow rate = v1 A1 = v2 A2
Q = v2 (πd2/4)
(d2)2 = 4 Q / (v2 π) = 4(7.8125 cm3/s) / {(π)(160.07 cm/s)} = 0.062 cm2
Thus : d2 = 0.249 cm