Question

In: Physics

A solid non-conducting cylinder is evenly charged with a constant volume charge density, ρ (the charge...

A solid non-conducting cylinder is evenly charged with a constant volume charge density, ρ (the charge is evenly distributed throughout the volume of the cylinder). The cylinder has a radius, R, and length, ℓ.

(a) Use Gauss’s Law to find an equation for the electric field strength, ???, at a radius, ? < ?.

(b) Use Gauss’s Law to find an equation for the electric field strength, ????, at a radius, ? > ?. Note: ? = ?⁄?????????, assume the cylinder is so long that you can ignore any electric field from the ends of the cylinder

Solutions

Expert Solution


Related Solutions

A non conducting sphere of radius R and uniform volume charge density is rotating with angular...
A non conducting sphere of radius R and uniform volume charge density is rotating with angular velocity, Omega. Assuming the center of the sphere is at the origin of the coordinate system, a) what is the magnitude and direction of the resulting magnetic field on the z axis for any arbitrary z distance away from the origin when z > R? b) same question as part a) but for z < R? Omega of the rotating sphere on the extra...
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3....
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3. Find the magnitude of the electric field at 1.25 m from the axis of the cylinder. a) what will your gaussian surface be? Make a sketch of the solid cylinder and the gaussian surface with their radii b) Write an expression for the total electric flux through the gaussian surface, that is the LHS (Left hand side) of the Gauss' law (this expression may...
To solid spheres (perfectly-conducting) have a volumetric mass density ρ. One of the spheres has a...
To solid spheres (perfectly-conducting) have a volumetric mass density ρ. One of the spheres has a radius of R (has a net charge -Q) and the other has a radius of 2R (with a net charge of 2Q). They are released from rest with their centers 6R apart in a vacuum in no gravitational field. Part 1: At what speeds are the spheres moving when they strike each other? Part 2: If they rebound elastically and can transfer charge by...
A long isolating cylinder with radius R and a charge density ρ(s) = 3λ πR3 (R...
A long isolating cylinder with radius R and a charge density ρ(s) = 3λ πR3 (R − s) for s ≤ R , 0   for s > R , where λ is a fixed positive line charge density (with units C/m) and s denotes the distance from the center of the cylinder. (a) Explain why the electric field is only a function of s. What is the direction of the electric field? (b) Use Gauss’ law to derive the magnitude...
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density...
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density of =4r3 where is in Cm3 when r is in meters. Calculate the magnitude of the electric field at a distance of 17.00 cm from the axis of the cylinder.
1) An insulating sphere with radius R has a uniform positive volume charge density of ρ....
1) An insulating sphere with radius R has a uniform positive volume charge density of ρ. A solid metallic shell with inner radius R and outer radius 2R has zero total charge. [Express your answers for parts (a-d) using ρ, R, and constants] (a) What is the magnitude of the electric field at a distance ? = 3? away from the center? (b) Assuming the potential at infinity is 0. What is the potential at the outer surface (? =...
A spherical cloud of negatively charged particles carries a charge density that is modeled by: ρ=ρ0(1−r/R)...
A spherical cloud of negatively charged particles carries a charge density that is modeled by: ρ=ρ0(1−r/R) Where ρ0 is the central density (which is 1.2 nC·m-3), R is the radius of the cloud (which is 2.9 m) and r is the distance from the centre of the cloud. a) Determine the electric field at 1.2 m from the centre of the cloud: __________  N·C-1    b) Determine the electric field at 4.1 m from the centre of the cloud: __________  N·C-1
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner radius a = 9.30 cm, and outer radius b = 2.6a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner radius a = 9.70 cm, and outer radius b = 3.4a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
Problem 5. A non-conductive solid sphere has a volumetric charge distribution given by ρ (r) =...
Problem 5. A non-conductive solid sphere has a volumetric charge distribution given by ρ (r) = (β / r) sin (πr / 2R). Where R is the radius of the sphere and β a positive constant. Find the total charge contained in the spherical volume and the electric field in regions r> R and r <R. Show that the two expressions for the electric field are equal in r = R.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT