Question

In: Physics

A spherical cloud of negatively charged particles carries a charge density that is modeled by: ρ=ρ0(1−r/R)...

A spherical cloud of negatively charged particles carries a charge density that is modeled by: ρ=ρ0(1−r/R)

Where ρ0 is the central density (which is 1.2 nC·m-3), R is the radius of the cloud (which is 2.9 m) and r is the distance from the centre of the cloud.

a) Determine the electric field at 1.2 m from the centre of the cloud: __________  N·C-1   

b) Determine the electric field at 4.1 m from the centre of the cloud: __________  N·C-1

Solutions

Expert Solution



Related Solutions

An insulating sphere of radius a has charge density ρ(r) = ρ0r2, where ρ0 is a...
An insulating sphere of radius a has charge density ρ(r) = ρ0r2, where ρ0 is a constant with appropriate units. The total charge on the sphere is -3q. Concentric with the insulating sphere is a conducting spherical shell with inner radius b > a and outer radius  The total charge on the shell is +2q. Determine (a) The magnitude of electric field at the following locations: (i) r < a; ii) a < r < b; (iii) b < r <...
1. The density of a filling sphere with radius R was given ρ = ρ0 (1...
1. The density of a filling sphere with radius R was given ρ = ρ0 (1 - r/2R). where r is the distance from the center. (a) find the force at which this sphere acts on the unit mass in r < R; (b) find the force acting on the unit mass at r ≥ R; (c) draw a graph of the amount obtained in (a) and (b) for r.
Consider a spherical charge distribution of radius R with a uniform charge density ρ. Using Gauss'...
Consider a spherical charge distribution of radius R with a uniform charge density ρ. Using Gauss' Law find the electric field at distance r from the axis where r < R.
A solid non-conducting cylinder is evenly charged with a constant volume charge density, ρ (the charge...
A solid non-conducting cylinder is evenly charged with a constant volume charge density, ρ (the charge is evenly distributed throughout the volume of the cylinder). The cylinder has a radius, R, and length, ℓ. (a) Use Gauss’s Law to find an equation for the electric field strength, ???, at a radius, ? < ?. (b) Use Gauss’s Law to find an equation for the electric field strength, ????, at a radius, ? > ?. Note: ? = ?⁄?????????, assume the...
1) An insulating sphere with radius R has a uniform positive volume charge density of ρ....
1) An insulating sphere with radius R has a uniform positive volume charge density of ρ. A solid metallic shell with inner radius R and outer radius 2R has zero total charge. [Express your answers for parts (a-d) using ρ, R, and constants] (a) What is the magnitude of the electric field at a distance ? = 3? away from the center? (b) Assuming the potential at infinity is 0. What is the potential at the outer surface (? =...
Two charged particles are located in the X-Y plane. Particle 1 carries -0.200 uC of charge...
Two charged particles are located in the X-Y plane. Particle 1 carries -0.200 uC of charge and is located at x= 3.55 m and y = 1.21 m. Particle 2 carries 0.920 uC of charge and is located at x = -3.47 m and y = 1.65 m. Find the Y component of the Electric Field at a point located at x = 2.87 and y = 3.96 m, in Newtons per Coulomb.
A long isolating cylinder with radius R and a charge density ρ(s) = 3λ πR3 (R...
A long isolating cylinder with radius R and a charge density ρ(s) = 3λ πR3 (R − s) for s ≤ R , 0   for s > R , where λ is a fixed positive line charge density (with units C/m) and s denotes the distance from the center of the cylinder. (a) Explain why the electric field is only a function of s. What is the direction of the electric field? (b) Use Gauss’ law to derive the magnitude...
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner radius a = 9.30 cm, and outer radius b = 2.6a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner radius a = 9.70 cm, and outer radius b = 3.4a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
A nonconducting sphere of radius R carries a volume charge density that is proportional to the...
A nonconducting sphere of radius R carries a volume charge density that is proportional to the distance from the center: Rho=Ar for r<=R, where A is a constant; Rho = 0 for r>R a) Find the total charge on the sphere b) Find the electric field inside the charge distribution. c) Find the electric field outside the charge distribution. d) Sketch the graph of E versus r.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT