Question

In: Physics

You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the...

You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.34 s after you released it. What is the angle of the incline?

A) 24.9 degrees

B) 19.9 degrees

c) 29.9 degrees

D) 44.9 degrees

Solutions

Expert Solution


Related Solutions

A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
A crate of mass 11.0 kg is pulled up a rough incline with an initial speed...
A crate of mass 11.0 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 102 N parallel to the incline, which makes an angle of 19.0° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
To push a crate of mass 55 kg up a frictionless ramp with an angle of...
To push a crate of mass 55 kg up a frictionless ramp with an angle of 50 ° to the horizontal, a worker exerts a force of 1050 N parallel to the incline. The crate moves a distance of 5 m What work is done on the crate by the worker? J Tries 0/2 What work is done by the weight of the crate?   J Tries 0/2 What work is done by the normal force exerted by the floor on...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00 m/s2, and the incline is 10.0 meter long. a) What is the kinetic energy of the crate as it reaches the bottom of the incline? b) How much work is spent in overcoming friction? c) What is the magnitude of friction force that acts on the crate as it slides down the incline? An advertisement claims that a certain 1200kg car can accelerate from...
You push a small mass (with respect to your mass) crate on a frictionless surface and...
You push a small mass (with respect to your mass) crate on a frictionless surface and it has some acceleration. If you are standing on the same frictionless surface, what happens to you? a) You stay where you are. b) You move forward at very low velocity. c) You move backward at very low velocity. d) You move forward at very high velocity. e) You move backward at very high velocity
A 31 kg crate full of fruits is placed on an incline that is 17◦ below...
A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline. (a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless and...
1. A 31 kg crate full of fruits is placed on an incline that is 17◦...
1. A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline. (a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to a halt after traveling 1.50 m along the incline. (a) If the initial speed of the crate was 1.85 m/s and the angle of inclination is 30.0°, how much energy was dissipated by friction? (b) What is the coefficient of sliding friction?
A 30.0 kg block is released at the top of a 20° frictionless incline. The block...
A 30.0 kg block is released at the top of a 20° frictionless incline. The block slides down the incline and compresses a spring (k=800 N/m) by 0.75 meters. What is the total distance the block traveled? It should be 1.5m
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT