Question

In: Physics

A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00...

  1. A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00 m/s2, and the incline is 10.0 meter long. a) What is the kinetic energy of the crate as it reaches the bottom of the incline? b) How much work is spent in overcoming friction? c) What is the magnitude of friction force that acts on the crate as it slides down the incline?
  2. An advertisement claims that a certain 1200kg car can accelerate from rest to a speed of 25.0 m/s in a time of 8.00 s. (a) What is the change in kinetic energy during 8.00 s? (b) What is the impulse of this car in a time of 8.00 s (c) What is the power of its motor to produce such acceleration? Ignore friction and drag forces.
  3. A playground merry-go-around is a metal disk of radius 2.50 m and mass of 80.0kg. Two kids, each of mass 40.0 Kg are riding on the outer rim of the disk. When they move halfway in toward the center (radius 1.25m), by what factor does the moment of inertia change?

Solutions

Expert Solution


Related Solutions

A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the...
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the horizontal. The acceleration of the crate parallel to the surface of the ramp is 2.0m/s^2, and the length of the ramp is 10m. Determine the kinetic energy accumulated by the crate when it reaches the bottom of the ramp if it started from rest at the top of the incline. Calculate the amount of energy lost by the crate due to friction in its...
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the...
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.34 s after you released it. What is the angle of the incline? A) 24.9 degrees B) 19.9 degrees c) 29.9 degrees D) 44.9 degrees
An 15.0-kg package in a mail-sorting room slides 4.00 mm down a chute that is inclined...
An 15.0-kg package in a mail-sorting room slides 4.00 mm down a chute that is inclined at 59.0 ∘∘ below the horizontal. The coefficient of kinetic friction between the package and the chute's surface is 0.90. 1.Calculate the work done on the package by gravity. Express your answer with the appropriate units. 2.Calculate the work done on the package by the normal force. Express your answer with the appropriate units. 3.What is the net work done on the package? Express...
A dockworker loading crates on a ship finds that a 34-kg crate, initially at rest on...
A dockworker loading crates on a ship finds that a 34-kg crate, initially at rest on a horizontal surface, requires a 73-N horizontal force to set it in motion. However, after the crate is in motion, a horizontal force of 50 N is required to keep it moving with a constant speed. Find the coefficients of static and kinetic friction between crate and floor
A 31 kg crate full of fruits is placed on an incline that is 17◦ below...
A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline. (a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless and...
1. A 31 kg crate full of fruits is placed on an incline that is 17◦...
1. A 31 kg crate full of fruits is placed on an incline that is 17◦ below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is parallel to the surface of the incline. (a) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume that the incline is frictionless...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it...
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to a halt after traveling 1.50 m along the incline. (a) If the initial speed of the crate was 1.85 m/s and the angle of inclination is 30.0°, how much energy was dissipated by friction? (b) What is the coefficient of sliding friction?
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that has a height h = 3.1 m. At the bottom, it hits a block of mass M = 7.1 kg that is at rest on a horizontal surface. Assume a smooth transition at the bottom of the ramp. If the collision is elastic and friction can be ignored, determine the distance the mass m will travel up the ramp after the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT