Question

In: Physics

You push a small mass (with respect to your mass) crate on a frictionless surface and...

You push a small mass (with respect to your mass) crate on a frictionless surface and it has some acceleration. If you are standing on the same frictionless surface, what happens to you?

a)

You stay where you are.

b)

You move forward at very low velocity.

c)

You move backward at very low velocity.

d)

You move forward at very high velocity.

e)

You move backward at very high velocity

Solutions

Expert Solution

According to Newton's third law of motion, every action has its equal and opposite reaction. If I push a small mass crate on a frictionless surface and it has some acceleration, the equal amount of force ( magnitude of the force is equal to the force exerted by me on the small mass) is exerted by the small crate on me in the backward direction ( according to Newton's third law of motion). The total linear momentum of the system ( me and the crate) should be conserved ( according to Newton's second law of motion).

If M and m are the mass of my body and the crate respectively and V and v are the velocities of my body and the crate respectively,

M*V + m* v =0

V = (- m / M ) * v

If m < M, V < v which means that my velocity will be less than the crate's velocity.

The negative sign of V signifies that my motion will be in the backward direction.

So, option (c) is correct i.e. I move backward at very low velocity (Ans).


Related Solutions

Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack...
Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack has a mass of 70 kg, Zack has a mass of 45 kg, and the crate has a mass of 15 kg. In what follows, we will see that both jump of the crate. You may assume that they push themselves off with a speed of 4 m/s relative to the crate and in a direction that is essentially horizontal. 1) what is the...
10.42 . CP A small block on a frictionless, horizontal surface has a mass of 0.0250...
10.42 . CP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (a)...
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with...
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with a block of mass 0.400 kg. Immediately after the collision, the 0.200 kg block is moving at 12.0 m/s in the direction 30
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the...
You place a crate of mass 31.6 kg on a frictionless 3.00-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.34 s after you released it. What is the angle of the incline? A) 24.9 degrees B) 19.9 degrees c) 29.9 degrees D) 44.9 degrees
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
A block of mass ? slides along a frictionless surface with a speed ? and collides...
A block of mass ? slides along a frictionless surface with a speed ? and collides with a stationary block of mass 2? . After the collision the block of mass ? rebounds with a speed of ?⁄2. What is the greatest speed ???? that the block of mass 2? can have after the collision?
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 48.7 n/m if the mass is 31.6 cm right (+) of the equilbrium point and moving at speed 4.8 m/s find the total mechanical energy.? ( question2-) A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 30.3 n/m .if the mass is 24.5 cm right (+)...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface when it comes upon a second block of mass m2 which is initially motionless. Block m2 has a massless spring with spring constant k in front of it. a. Explain why the linear momentum of the system of two blocks and spring is or is not conserved during the collision. b. Explain why the mechanical energy of the system of two blocks and spring...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT