In: Advanced Math
Determine all possible Jordan canonical forms J for a matrix of order 6 whose minimal polynomial is
\( m(\lambda)=\bigg(\lambda-1\bigg)^3\bigg(\lambda-3\bigg)^2 \)
Solution
we have the minimal polynomial is
\( m(\lambda)=\bigg(\lambda-1\bigg)^3\bigg(\lambda-3\bigg)^2 \)
we take \( m(\lambda)=0\implies \bigg(\lambda-1\bigg)^3\bigg(\lambda-3\bigg)^2 =0 \)
since \( \lambda_1=1 \hspace{2mm}and\hspace{2mm}\lambda_2=3 \)
\( \implies Index(1)=3 \) (means the bigest Jordan block is \( 3\times3 \))\( \implies Index(3)=2 \) (means the bigest Jordan block is \( 2\times2 \))
Therefore. all possible Jordan Canonical form is :
\( J_{1\:}=\begin{pmatrix}1&1&0&0&0&0\\ 0&1&1&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&3&1&0\\ 0&0&0&0&3&0\\ 0&0&0&0&0&3\end{pmatrix},J_2=\begin{pmatrix}1&1&0&0&0&0\\ 0&1&1&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&3&1\\ 0&0&0&0&0&3\end{pmatrix} \)
Answer
Therefore. all possible Jordan Canonical form is :
\( J_{1\:}=\begin{pmatrix}1&1&0&0&0&0\\ 0&1&1&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&3&1&0\\ 0&0&0&0&3&0\\ 0&0&0&0&0&3\end{pmatrix},J_2=\begin{pmatrix}1&1&0&0&0&0\\ 0&1&1&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&3&1\\ 0&0&0&0&0&3\end{pmatrix} \)