Question

In: Advanced Math

The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.

The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.

A=\( \begin{pmatrix}2&0&0&0\\ 0&2&0&0\\ 0&0&1&0\\ 0&0&0&3\end{pmatrix} \)

Solutions

Expert Solution

Solution

A=\( \begin{pmatrix}2&0&0&0\\ 0&2&0&0\\ 0&0&1&0\\ 0&0&0&3\end{pmatrix} \)

The characteristics polynomial. \( \implies P(\lambda)=|A-\lambda I|=\bigg(2-\lambda\bigg)^2\bigg(1-\lambda\bigg)\bigg(3-\lambda\bigg)\hspace{2mm} \)

The algebraic multiplicity

\( \implies am(2)=2,am(1)=1,am(3)=1 \hspace{2mm} \)

The geometric multiplicity

\( \implies gm(2)=2,gm(1)=1,gm(3)=1\hspace{2mm} \)

The \( index\implies Index(2)=1,Index(1)=1,Index(3)=1 \hspace{2mm} \)

The minimal polynomial

\( \implies m(\lambda)=\bigg(\lambda-1\bigg)\bigg(\lambda-1\bigg)\bigg(\lambda-3\bigg)\hspace{2mm} \)


Answer :

Therefore .

\( \implies P(\lambda)=|A-\lambda I|=\bigg(2-\lambda\bigg)^2\bigg(1-\lambda\bigg)\bigg(3-\lambda\bigg)\hspace{2mm} \)

\( \implies am(2)=2,am(1)=1,am(3)=1 \hspace{2mm} \)

\( \implies gm(2)=2,gm(1)=1,gm(3)=1\hspace{2mm} \)

\( \implies Index(2)=1,Index(1)=1,Index(3)=1 \hspace{2mm} \)

Related Solutions

The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.
The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L. B=\( \begin{pmatrix}2&1&0&0\\ 0&2&0&0\\ 0&0&3&0\\ 0&0&0&3\end{pmatrix} \)
Determine all possible Jordan canonical forms for a linear operator L whose characteristic polynomial is
Determine all possible Jordan canonical forms for a linear operator L whose characteristic polynomial is  \( P(\lambda)=\bigg(\lambda-3\bigg)^3\bigg(\lambda-4\bigg)^2 \)
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce the their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over \( \mathbb{R} \), then deduce the their corresponding Jordan Canonical Form J. A=\( \begin{pmatrix}1&-1&-1\\ 0&0&-1\\ 0&1&2\end{pmatrix}\: \)
Find the characteristics and the minimal polynomial of the following matrices over R , then deduce the their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over \( \mathbb{R} \), then deduce the their corresponding Jordan Canonical Form J. B=\( \begin{pmatrix}2&-1&-1&2\\ 0&1&-1&2\\ 2&-5&-1&6\\ 1&-3&-2&6\end{pmatrix} \)
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce their corresponding Jordan Canonical Form J. C=\( \begin{pmatrix}1&1&0&0\\ -1&-1&1&0\\ 0&1&1&0\\ -1&-1&1&1\end{pmatrix} \)  
Find the characteristics and characteristic coordinates, and reduce the following equation to canonical form: for y>0...
Find the characteristics and characteristic coordinates, and reduce the following equation to canonical form: for y>0 only Uxx+yUyy=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT