In: Statistics and Probability
Given the data of BMI of Freshman students at the beginning of Fall and Spring semester
- compute the correlation coefficient
- find the slope of the regression line
- find the intercept of the regression line
- draw the scatterplot of the data with the regression line
- predict the value of BMISP given the predictor BMIAP is 22.28
- what is the coefficient of determination and what does it tell us?
BMIAP BMISP
18.14 22.02
17.44 19.7
22.43 24.09
25.57 26.97
20.1 21.51
17.4 18.69
22.88 24.24
20.23 21.23
29.24 30.26
21.02 21.88
16.89 17.63
23.85 24.57
20.15 20.68
20.36 20.97
26.73 27.3
22.88 23.3
19.24 19.48
24.69 24.74
20.79 20.69
20.6 20.49
21.24 21.09
18.53 18.37
22.61 22.4
28.43 28.17
23.81 23.6
26.78 26.52
19.27 18.89
19.75 19.31
21.32 20.96
22.22 21.78
20.23 19.78
22.82 22.4
23.19 22.76
20.69 20.15
22.57 22.14
20.76 20.27
22.93 22.15
24.67 23.87
19.34 18.61
22.58 21.73
19.72 18.93
26.72 25.88
29.53 28.59
22.79 21.89
19.28 18.31
20.63 19.64
24.1 23.02
21.91 20.63
23.81 22.61
23.42 22.03
21.34 20.31
21.36 20.31
20.77 19.59
22.31 21.05
25.11 23.47
24.29 22.84
20.9 19.5
19.83 18.51
22.97 21.4
19.42 17.72
23.87 22.26
23.81 21.64
24.45 22.51
25.8 23.69
17.74 15.08
25.33 22.64
40.86 36.57
BMIAP BMISP
18.14 22.02
17.44 19.7
22.43 24.09
25.57 26.97
20.1 21.51
17.4 18.69
22.88 24.24
20.23 21.23
29.24 30.26
21.02 21.88
16.89 17.63
23.85 24.57
20.15 20.68
20.36 20.97
26.73 27.3
22.88 23.3
19.24 19.48
24.69 24.74
20.79 20.69
20.6 20.49
21.24 21.09
18.53 18.37
22.61 22.4
28.43 28.17
23.81 23.6
26.78 26.52
19.27 18.89
19.75 19.31
21.32 20.96
22.22 21.78
20.23 19.78
22.82 22.4
23.19 22.76
20.69 20.15
22.57 22.14
20.76 20.27
22.93 22.15
24.67 23.87
19.34 18.61
22.58 21.73
19.72 18.93
26.72 25.88
29.53 28.59
22.79 21.89
19.28 18.31
20.63 19.64
24.1 23.02
21.91 20.63
23.81 22.61
23.42 22.03
21.34 20.31
21.36 20.31
20.77 19.59
22.31 21.05
25.11 23.47
24.29 22.84
20.9 19.5
19.83 18.51
22.97 21.4
19.42 17.72
23.87 22.26
23.81 21.64
24.45 22.51
25.8 23.69
17.74 15.08
25.33 22.64
40.86 36.57
Solution:
A correlation coefficient and regression model for the given data for dependent variable BMISP and independent variable BMIAP is given as below:
Correlation coefficient:
BMIAP |
BMISP |
|
BMIAP |
1 |
|
BMISP |
0.937073547 |
1 |
Regression Statistics |
||||||
Multiple R |
0.937073547 |
|||||
R Square |
0.878106833 |
|||||
Adjusted R Square |
0.877183399 |
|||||
Standard Error |
1.155243367 |
|||||
Observations |
134 |
|||||
ANOVA |
||||||
df |
SS |
MS |
F |
Significance F |
||
Regression |
1 |
1269.079685 |
1269.079685 |
950.9154969 |
3.49338E-62 |
|
Residual |
132 |
176.1655152 |
1.334587236 |
|||
Total |
133 |
1445.2452 |
||||
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
|
Intercept |
2.67793662 |
0.635447153 |
4.214255439 |
4.61447E-05 |
1.42095936 |
3.934913879 |
BMIAP |
0.860696906 |
0.02791125 |
30.83691776 |
3.49338E-62 |
0.805485696 |
0.915908115 |
- compute the correlation coefficient
The correlation coefficient between the dependent variable BMISP and independent variable BMIAP is given as 0.9371 which means there is a strong positive linear relationship or association exists between the dependent variable BMISP and independent variable BMIAP.
- find the slope of the regression line
The slope of the regression line is given as 0.8607 approximately.
- find the intercept of the regression line
The intercept of the regression line is given as 2.6779 approximately.
- draw the scatterplot of the data with the regression line
Required scatterplot of the data with the regression line is given as below:
- predict the value of BMISP given the predictor BMIAP is 22.28
The regression equation is given as below:
BMISP = 2.6779 + 0.8607*BMIAP
We are given BMIAP = 22.28
BMISP = 2.6779 + 0.8607*22.28
BMISP = 21.854296
BMISP = 21.8543
- what is the coefficient of determination and what does it tell us?
The coefficient of determination or the value of R square is given as 0.8781 which means about 87.81% of the variation in the dependent variable BMISP is explained by the independent variable BMIAP.