Question

In: Physics

Four charges of magnitude +q are placed at the corners of a square whose sides have...

Four charges of magnitude +q are placed at the corners of a square whose sides have a length d. What is the magnitude of the total force exerted by the four charges on a charge Q located a distance b along a line perpendicular to the plane of the square and equidistant from the four charges? Ans: bqQ/πε 0 (b2 + d2 / 2) how to get this answer?

Solutions

Expert Solution


Related Solutions

Four identical point charges of magnitude q = 3.2 nC are placed at the corners of...
Four identical point charges of magnitude q = 3.2 nC are placed at the corners of a rhombus of edge length l = 22 cm and obtuse angle θ. We intentionally leave θ undefined. Find the net electric force on each of the four charges. Your answer will depend on the angleθ. For convenience, orient your rhombus so that the charges are placed at (±x, 0) and (0, ±y).
two positive charge and two negative charges of magnitude (Q) at the corners of a square...
two positive charge and two negative charges of magnitude (Q) at the corners of a square of length (L) such that the like charges are at diagonally opposite corners. determine the magnitude and direction of the force on one of the positive charges due to the other three charges
Four equally charged particles with charge q are placed at the corners of a square with...
Four equally charged particles with charge q are placed at the corners of a square with side length L, as shown in the figure below. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? (Use any variable or symbol stated above as necessary.) magnitude Q =
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a...
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a side. The charges on the bottom are both positive, and the charges on the top are both negative. (a) Find the electric field at the center of the square, in units of V/m. vector E = 0 i hat + 235.7 j (b)Find the electric field at the midpoint of the right side, in units of V/m. vector E = _ i hat +...
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 5.5q and C = 2.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) magnitude = _______  direction = _______   counterclockwise from the +x-axis
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B=5.5q and C=8.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) 
Three charges at the corners of a square of sides s = 3.40 m. Here, q1...
Three charges at the corners of a square of sides s = 3.40 m. Here, q1 = q2 = −q and q3 = −1.5q where q = 9.00 nC. q2 is at the top left of the square, q3 at the bottom left and q1 at the bottom right. (a) What is the magnitude of the electric field at the center of the square due to these three charges? (b) You now replace q1 in the square with another point...
Four charges are at the corners of a square centered at the origin as follows: 7...
Four charges are at the corners of a square centered at the origin as follows: 7 q at (?4 a,+3 a) , 9 q at (+4 a,+3 a) , ?5 q at (+4 a,?3 a) , and 9 q at (?4 a,?3 a) . A fifth charge 9 q with mass m is placed at the origin and released from rest
Three charges of +Q are at the three corners of a square of side length L....
Three charges of +Q are at the three corners of a square of side length L. The last corner is occupied by a charge of -Q. Find the electric field at the center of the square.
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 2.1 cm . Two of the particles have a negative charge: q1 = -8.0 nC and q2 = -16.0 nC . The remaining particle has a positive charge, q3 = 8.0 nC . What is the net electric force acting on particle 3 due to particle 1 and particle 2? A) Find the net force ΣF⃗ 3 acting on particle 3...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT