Question

In: Physics

Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a...

Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a side. The charges on the bottom are both positive, and the charges on the top are both negative.

(a) Find the electric field at the center of the square, in units of V/m. vector E = 0 i hat + 235.7 j

(b)Find the electric field at the midpoint of the right side, in units of V/m. vector E = _ i hat + _ j

Please help find the answer to part B.

Solutions

Expert Solution

We know that the electric field is directed away from a positive charge and  electric field is directed towards the  negative charge.

At point  'P' the electric field due to the charges Q1, Q2, Q3 and Q4 are

We resolve in x- y direction

&

The net electric field at point P is

  

    [ 'k' is Coulomb's Constant]

From geometry, we find and given a(side length)=3.6m

Let

So we find the x component of the net electric field is

[ ]

And the y- component of the net electric field is

  

So the  electric field at the midpoint of the right side is

  

  


Related Solutions

Four identical point charges of magnitude q = 3.2 nC are placed at the corners of...
Four identical point charges of magnitude q = 3.2 nC are placed at the corners of a rhombus of edge length l = 22 cm and obtuse angle θ. We intentionally leave θ undefined. Find the net electric force on each of the four charges. Your answer will depend on the angleθ. For convenience, orient your rhombus so that the charges are placed at (±x, 0) and (0, ±y).
Four charges of magnitude +q are placed at the corners of a square whose sides have...
Four charges of magnitude +q are placed at the corners of a square whose sides have a length d. What is the magnitude of the total force exerted by the four charges on a charge Q located a distance b along a line perpendicular to the plane of the square and equidistant from the four charges? Ans: bqQ/πε 0 (b2 + d2 / 2) how to get this answer?
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 5.5q and C = 2.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) magnitude = _______  direction = _______   counterclockwise from the +x-axis
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B=5.5q and C=8.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) 
Point charges of 9.00 nC are situated at each of three corners of a square whose...
Point charges of 9.00 nC are situated at each of three corners of a square whose side is 0.450 m . a. What is the magnitude of the resultant force on a point charge of -4.00 μC if it is placed at the center of the square? b. What is the magnitude of the resultant force on a point charge of -4.00 μC if it is placed at the vacant corner of the square?
Four charges are at the corners of a square centered at the origin as follows: 7...
Four charges are at the corners of a square centered at the origin as follows: 7 q at (?4 a,+3 a) , 9 q at (+4 a,+3 a) , ?5 q at (+4 a,?3 a) , and 9 q at (?4 a,?3 a) . A fifth charge 9 q with mass m is placed at the origin and released from rest
Point charges q1=+2.00μCq1=+2.00μC and q2=−2.00μCq2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μCq1=+2.00μC and q2=−2.00μCq2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 4.00 cmcm. Point aaa is at the center of the square, and point b is at the empty corner closest to q2q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3q3q_3 = -6.00 μCμC moves from point aaa to point bbb. How much work is done on q3q3 by the...
Two charges + 12 nC and -12 nC, are placed at (- 3.5 m, 0) and...
Two charges + 12 nC and -12 nC, are placed at (- 3.5 m, 0) and (3.5 m, 0) respectively. The Coulomb constant is given by k = 8.99x109 N m2 / C2, a) If the field E from the positive charge at (0, 1 m ) is given by E = a x + b y , find a and b respectively Number Units Number Units b) If the field E from the negative charge at (0, 1 m)...
Four charges are placed on the corners of a rectangle with length d = 0.00341 mm...
Four charges are placed on the corners of a rectangle with length d = 0.00341 mm and breadth s = 0.00119 mm, as shown in the figure. The charges are given in terms of the elementary charge, e = +1.602×10‒19 C, as follows: q1 = q2 = +2000e and q3 = q4 = ‒3000e. (a) Calculate the electric potential at point A, the middle of the rectangle, and at point B, the middle of the right-hand side of the rectangle....
Four equally charged particles with charge q are placed at the corners of a square with...
Four equally charged particles with charge q are placed at the corners of a square with side length L, as shown in the figure below. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? (Use any variable or symbol stated above as necessary.) magnitude Q =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT