Question

In: Physics

Four charges are at the corners of a square centered at the origin as follows: 7...

Four charges are at the corners of a square

centered at the origin as follows:

7 q at (?4 a,+3 a) ,

9 q at (+4 a,+3 a) ,

?5 q at (+4 a,?3 a) , and

9 q at (?4 a,?3 a) .

A fifth charge 9 q with mass m is placed at

the origin and released from rest

Solutions

Expert Solution

Please make clear your requirement in your question. You are provided some information but you got to mentioned your requirment.

                  Suppose if you want to find the value of force on fifth charge due to four charges then you will sum up the value of four forces at origin.

                 Same summation procedure will be done in case of finding electric field.

                  You must choose the co ordinate axis and resolve the force or electric field into the component at origin where the fifth charge is placed.

                        Any how you have to present your requirment in order to get complete answer.


Related Solutions

Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 5.5q and C = 2.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) magnitude = _______  direction = _______   counterclockwise from the +x-axis
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B=5.5q and C=8.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.) 
Four lines from a square in the z = 0 plane, centered at the origin, with...
Four lines from a square in the z = 0 plane, centered at the origin, with a side length of 2a. The lines at x = a and x = -a have a positive charge density +λ0, and the lines at y = a and y = -a have a negative charge density −λ0. a. Find an expression for the potential at an arbitrary point (x, y, z). b. Use your result from part (a) to find the potential at...
Four charges of magnitude +q are placed at the corners of a square whose sides have...
Four charges of magnitude +q are placed at the corners of a square whose sides have a length d. What is the magnitude of the total force exerted by the four charges on a charge Q located a distance b along a line perpendicular to the plane of the square and equidistant from the four charges? Ans: bqQ/πε 0 (b2 + d2 / 2) how to get this answer?
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a...
Consider four 60·nC charges placed at the corners of a square, which is 3.6·m on a side. The charges on the bottom are both positive, and the charges on the top are both negative. (a) Find the electric field at the center of the square, in units of V/m. vector E = 0 i hat + 235.7 j (b)Find the electric field at the midpoint of the right side, in units of V/m. vector E = _ i hat +...
Three charges of +Q are at the three corners of a square of side length L....
Three charges of +Q are at the three corners of a square of side length L. The last corner is occupied by a charge of -Q. Find the electric field at the center of the square.
Let S be the square centered at the origin with sides of length 2, and C...
Let S be the square centered at the origin with sides of length 2, and C be the unit circle centered at the origin. (a) If you randomly throw a point on S, what is the probability that it will lie in C? Ans: 0.785 (b) Describe how you could use simulation to estimate the probability in part (a). (c) How can you use simulation to estimate a? For part b and c, there maybe a need to generate random...
Three charges at the corners of a square of sides s = 3.40 m. Here, q1...
Three charges at the corners of a square of sides s = 3.40 m. Here, q1 = q2 = −q and q3 = −1.5q where q = 9.00 nC. q2 is at the top left of the square, q3 at the bottom left and q1 at the bottom right. (a) What is the magnitude of the electric field at the center of the square due to these three charges? (b) You now replace q1 in the square with another point...
Place 4 charges at the corners of a square which is 2 meters by 2 meters...
Place 4 charges at the corners of a square which is 2 meters by 2 meters (4 large squares along each length). Place two +1 nC charges at adjacent corners and two -1 nC charges at the other two corners. Determine the direction of the electric field at the following three points: Point E halfway between two like charges. (-120 degrees, 50 V/m) Point F halfway between two opposite charges. (-90.5 degrees, 309 V/m) Point G at the center of...
4 charges are fixed to the corners of a square of side .53 cm. Charge 1...
4 charges are fixed to the corners of a square of side .53 cm. Charge 1 of -1 uC is fixed to the top left corner. Charge 2 of -2uC is fixed to the top right corner, charge 3 of 3uC is fixed to the bottom left corner , and charge 4 of -4uC is fixed to the bottom right corner. a) find the magnitude and direction of the electric field at the center of the square b) find the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT