Question

In: Physics

In the figure, a 0.24 kg block of cheese lies on the floor of a 920...

In the figure, a 0.24 kg block of cheese lies on the floor of a 920 kg elevator cab that is being pulled upward by a cable through distance d1 = 2.1 m and then through distance d2 = 10.6 m. (a) Through d1, if the normal force on the block from the floor has constant magnitude FN = 2.97 N, how much work is done on the cab by the force from the cable? (b) Through d2, if the work done on the cab by the (constant) force from the cable is 91.92 kJ, what is the magnitude of FN?

Solutions

Expert Solution

The concept used is of force balance and connected mass system , acceleration of cheese block and the elevator is same because cheese block and elevator system behave as the connected mass . Initially i draw the free body diagram of cheese alone and cheese plus elevator system , after that balances all the forces and get the desired result asked in the question

kindly upvote  my answer , if you like , by clicking on the like button.


Related Solutions

The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle θ = 20°. What is the magnitude of the acceleration of the block across the floor if (a) μs = 0.630 and μk = 0.530 and (b) μs = 0.430 and μk = 0.320? (a) Number Enter your answer in accordance to item (a) of the question statement Units Choose the answer from the menu in...
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle ? = 20
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle ? = 20
The 1.0 kg block in the figure is tied to the wall with a rope. It...
The 1.0 kg block in the figure is tied to the wall with a rope. It sits on top of the 2.0 kg block. The lower block is pulled to the right with a tension force of 20 N. The coefficient of kinetic friction at both the lower and upper surfaces of the 2.0 kg block is μk = 0.43. What is the tension in the rope holding the 1.0 kg block to the wall? What is the acceleration of...
A block of mass 220 kg initially at rest is pushed along the floor by a...
A block of mass 220 kg initially at rest is pushed along the floor by a force F directed at an angle 40o below the positive x-axis. The force pushes against a friction force with coefficient µ = 0.25. Calculate the magnitude of the force F, that will give the block an acceleration of 3.6 m/s2
Block A in the figure below has mass 1.30 kg , and block B has mass...
Block A in the figure below has mass 1.30 kg , and block B has mass 2.85 kg . The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of 1.20 m/s . Part A What is the final speed of...
A 0.726-kg rope 2.00 meters long lies on a floor. You grasp one end of the...
A 0.726-kg rope 2.00 meters long lies on a floor. You grasp one end of the rope and begin lifting it upward with a constant speed of 0.710 m/s. Find the position and velocity of the rope’s center of mass from the time you begin lifting the rope to the time the last piece of rope lifts off the floor. Plot your results. (Assume the rope occupies negligible volume directly below the point where it is being lifted.)
A 15.0 kg block is released from rest at point A in the figure below. The...
A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.200 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in...
the figure, block 2 of mass 2.20 kg oscillates on the end of a spring in SHM with a period of 18.00 ms. The position of the block is given by x = (0.600 cm) cos(ωt + π/2). Block 1 of mass 4.40 kg slides toward block 2 with a velocity of magnitude 7.80 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 4.50 ms. (The duration of the collision is...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring...
In the figure, block 2 of mass 2.90 kg oscillates on the end of a spring in SHM with a period of 26.00 ms. The position of the block is given by x = (0.700 cm) cos(?t + ?/2). Block 1 of mass 5.80 kg slides toward block 2 with a velocity of magnitude 8.70 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 6.50 ms. (The duration of the collision...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT