Question

In: Physics

A 15.0 kg block is released from rest at point A in the figure below. The...

A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.200 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C.

A block is on a track that is frictionless except at the location described below. The block is on the leftmost part of the track, which is vertical. The bottom of the block is labeled A and is 3.00 m from the ground. From point A, the track curves downward from left to right, starting from an almost-vertical slope and then decreasing in slope magnitude until it is horizontal. The right part of the track is horizontal and has a longer surface length than that of the first part of the track. In the middle of this stretch of horizontal track, between points B and C, the surface is rough and has friction for a span of 6.00 m. A horizontal spring is at the right end of the track. The right end of the spring is attached to a vertical wall, and the left end is unattached.

(b)

What If? The spring now expands, forcing the block back to the left. Does the block reach point B?

YesNo   

If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)

m

Solutions

Expert Solution


Related Solutions

1.) In the figure, a block of mass m = 13 kg is released from rest...
1.) In the figure, a block of mass m = 13 kg is released from rest on a frictionless incline of angle θ = 30°. Below the block is a spring that can be compressed 3.7 cm by a force of 210 N. The block momentarily stops when it compresses the spring by 6.0 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the...
A block of mass m = 3.50 kg is released from rest from point A and...
A block of mass m = 3.50 kg is released from rest from point A and slides on the frictionless track shown in the figure below. (Let ha = 5.20 m.) (a) Determine the block's speed at points B and C vB =  m/s vC =  m/s (b) Determine the net work done by the gravitational force on the block as it moves from point A to point C. J
The figure shows a 100-kg block being released from rest from a height of 1.0 m.
The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. What is the mass of the other block? The pulley has no appreciable mass or friction. A. 60 kg B. 48 kg C. 54 kg D. 42 kg             The figure shows a 100 - kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach...
A 3 kg block (block A) is released from rest at the top of a 20...
A 3 kg block (block A) is released from rest at the top of a 20 m long frictionless ramp that is 3 m high. At the same time, an identical block (block B) is released next to the ramp so that it drops straight down the same 3 m. Find the values for each of the following for the blocks just before they reach ground level. (a) gravitational potential energy Block A____J Block B____J (b) kinetic energy Block a____...
A block of mass M = 4.0kg is released from rest at point A as shown....
A block of mass M = 4.0kg is released from rest at point A as shown. Part AB of the track is frictionless and is one quarter of a circle of radius R=1.25m. The horizontal part of the track BC is rough with co-efficient of kinetic friction . The block comes to rest at C after moving a distance L = 6.25m. The block can be treated as a point particle. [a] What is the speed (in m/s) of M...
A block of mass m = 2.00 kg is released from rest at h = 0.600...
A block of mass m = 2.00 kg is released from rest at h = 0.600 m above the surface of a table, at the top of a ? = 40.0
A mass 1 0.400 kg block is released from rest at the top of a frictionless...
A mass 1 0.400 kg block is released from rest at the top of a frictionless track height one=2.90 m above the top of a table. It then collides elastically with a 1.00 kg mass that is initially at rest on the table. Assume a perfectly inelastic equation. a) Determine the speed of the two masses just after the collision. b. How far away from the bottom of the table does the 1.00 kg mass land, given that the table...
A 10-kg block A is released from rest 2 m above the 5-kg plate P, which...
A 10-kg block A is released from rest 2 m above the 5-kg plate P, which can slide freely along the smooth vertical guides BC and DE. Determine the velocity of the block and plate just after impact. The coefficient of restitution between the block and the plate is e = 0.75. Also, find the maximum compression of the spring due to impact.The spring has an unstretched length of 600 mm The spring with the 5 kg plate are stationary...
A small rock with mass 0.30 kg k g is released from rest at point A...
A small rock with mass 0.30 kg k g is released from rest at point A A , which is at the top edge of a large, hemispherical bowl with radius R R = 0.48 m m (the figure (Figure 1)). Assume that the size of the rock is small compared to R R , so that the rock can be treated as a particle, and assume that the rock slides rather than rolls. The work done by friction on...
As shown in the figure below, two blocks (m1 and m2) are each released from rest...
As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of   h = 4.68 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.05 kg, determine the maximum heights to which they rise after the collision. Use the coordinate system shown in the figure. y1f = m y2f = m.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT