Question

In: Chemistry

For a hypothetical reaction, ΔrHθ = 89.1 kJ/mol and ΔrSθ = 364 J/mol/K. What is the...

For a hypothetical reaction, ΔrHθ = 89.1 kJ/mol and ΔrSθ = 364 J/mol/K. What is the total standard entropy of the reaction, ΔrStotθ, at 343 K?

Solutions

Expert Solution


Related Solutions

A reaction has and △H°298 = 151 kJ/mol and △S°298 = 286 J /mol K at...
A reaction has and △H°298 = 151 kJ/mol and △S°298 = 286 J /mol K at 298 K. Calculate △G in kJ/mol.
Cgas = 1.3 J/g×K    Hvap = 38.56 kJ/mol    Cliq = 2.3 J/g×K      Hfus = 5.02 kJ/mol   ...
Cgas = 1.3 J/g×K    Hvap = 38.56 kJ/mol    Cliq = 2.3 J/g×K      Hfus = 5.02 kJ/mol    Csolid = 0.97 J/g×K      Condensation Temp = 78.0oC               Freezing Pt = -114.0oC Calculate the amount of heat required toconvert 92.6 mL of ethanol, C2H6O, from 110.0oC to -98.0oC.
Estimate Keq for the following equilibria at 350 K. R = 8.3145 J/(mol*K). Substance ΔHo(kJ/mol) So(J/(mol*K))...
Estimate Keq for the following equilibria at 350 K. R = 8.3145 J/(mol*K). Substance ΔHo(kJ/mol) So(J/(mol*K)) SnO2(s) -577.6 49.0 H2(g) 0 130.680 CO(g) -110.5 197.7 Sn(s, white) 0 51.2 H2O(l) -285.83 69.95 Fe(s) 0 27.3 Fe3O4(s) -1118.4 146.4 Correct answer. Correct. SnO2(s) + 2H2(g) ⇄ Sn(s, white) + 2H2O(l) The number of significant digits is set to 2; the tolerance is +/-3% LINK TO TEXT Incorrect answer. Incorrect. 3Fe(s) + 4H2O(l) ⇄ Fe3O4(s) + 4H2(g) Entry field with incorrect answer...
Suppose Delta G^o is 25.0 KJ/mol for a hypothetical reaction in which A converts into B....
Suppose Delta G^o is 25.0 KJ/mol for a hypothetical reaction in which A converts into B. Which of the following statements describes an equlibrium mixture of A and B? a) B has a higher concentration than A. b) Only A is present. c) A and B have equal concentrations. d) Only B is present. e) A has a higher concentration than B. Could you please explain your reasoning behind the answer as well?
For the reaction below, Δ S ° = − 269 J/(mol · K) and Δ H...
For the reaction below, Δ S ° = − 269 J/(mol · K) and Δ H ° = − 103.8 kJ/mol. Calculate the equilibrium constant at 25 °C. 3C(s) + 4H_2 (g) -->C_3+ H_8 (g)
For a given reaction, the heat capacity (CP) of the reactants is 50.0 J/mol K and...
For a given reaction, the heat capacity (CP) of the reactants is 50.0 J/mol K and for the products is 65.0 J/mol K. If the enthalpy of reaction is − 150.0 kJ/mol at 300K, what is the best estimate of ΔrxnH at 320K? The reaction in the previous question is carried out adiabatically starting at 300 K. What is the final temperature after the reaction goes to completion? ΔrxnH300 = -150.0 kJ/mol CP(reactants) = 50 J/molK CP(products) = 65 J/molK...
For a particular reaction at 129.9 °C, ΔG = 319.61 kJ/mol, and ΔS = 777.00 J/(mol·K)....
For a particular reaction at 129.9 °C, ΔG = 319.61 kJ/mol, and ΔS = 777.00 J/(mol·K). delta g is -47.6 celcius
For a particular reaction at 234.1 °C, ΔG = -832.94 kJ/mol, and ΔS = 923.32 J/(mol·K)....
For a particular reaction at 234.1 °C, ΔG = -832.94 kJ/mol, and ΔS = 923.32 J/(mol·K). Calculate ΔG for this reaction at -105.7 °C.
For a particular reaction at 215.7 °C, ΔG = 404.91 kJ/mol, and ΔS = 748.20 J/(mol·K)....
For a particular reaction at 215.7 °C, ΔG = 404.91 kJ/mol, and ΔS = 748.20 J/(mol·K). Calculate delta G for -74.3 celcius. I've asked this question previously and the individual who answered got roughly 378 kj/mol which is incorrect.
The reaction C4H8(g)⟶2C2H4(g)C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol.262 kJ/mol. At 600.0 K,600.0 K, the...
The reaction C4H8(g)⟶2C2H4(g)C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol.262 kJ/mol. At 600.0 K,600.0 K, the rate constant, ?,k, is 6.1×10−8 s−1.6.1×10−8 s−1. What is the value of the rate constant at 765.0 K?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT