In: Computer Science
A set of hypothesis and a conclusion are given. Use the valid argument forms to deduce the conclusion from the hypothesis.
(i) p v q,
(ii) q ->r,
(iii)(p^s) ->t,
(iv) not r,
(v) (not q) -> (u ^ s)
(vi) t
Hypothesis:
1) p V q
2) q->r
3) (p s) -> t
4) ~r
5) ~q -> (u s)
Conclusion:
t
Proof:
q->r can be written as ~r->~q [Contrapositive]
Therefore we get 6) ~r->~q.
From 4) and 6) we get:-
7) ~q [Modus Ponens]
From 7) and 5) we get:-
8) u s [Modus Ponens]
From 8) we get:-
9) s [Simplification]
From 1) and 7) we get:-
10) p [Disjunctive Syllogism]
From 9) and 10) we get:-
11) p s [Conjunction]
From 11) and 3) we get:-
t [Modus Ponens]
Hence, Proved.