Question

In: Physics

In a certain scattering experiment, protons with mass m are fired with initial kinetic energy K0...

In a certain scattering experiment, protons with mass m are fired with initial kinetic energy K0 (momentum p0) at a target consisting of helium atoms (the mass of a helium atom is approximately 4m). Protons scattered at an angle of 90◦ relative to their initial direction of motion are measured to have a kinetic energy of Kp = 0.54K0 (corresponding to a momentum of pp). Assuming that each outgoing proton collided with one and only one helium atom, is this collision elastic, or has the helium atom increased its internal energy during the collision (it is very hard to increase the internal energy of a proton)? Follow the steps outlined below in order to answer this question. a. (2 points) Draw a useful before and after picture and label it with appropriate symbols. b. (2 points) Find the momentum of the proton, pp, after the collision relative to the momentum of the proton, p0, before the collision. c. (3 points) Use a conservation law to determine the components of the helium atom’s momentum, ~pH, after the collision in terms of p0. d. (3 points) Use a conservation law and correct algebra to answer the question posed.

Solutions

Expert Solution

If you find this answer helpful, please give it a thumbs up. Thank you.


Related Solutions

In proton-beam therapy, a high-energy beam of protons is fired at a tumor. The protons come...
In proton-beam therapy, a high-energy beam of protons is fired at a tumor. The protons come to rest in the tumor, depositing their kinetic energy and breaking apart the tumor’s DNA, thus killing its cells. For one patient, it is desired that 0.10 JJ of proton energy be deposited in a tumor. To create the proton beam, the protons are accelerated from rest through a 23 MVMV potential difference. What is the total charge of the protons that must be...
Alpha particles of a certain initial kinetic energy are projected at nuclei with atomic number Z...
Alpha particles of a certain initial kinetic energy are projected at nuclei with atomic number Z = 60. The closest distance of approach of the alpha particles to the nucleus is 100 fm (fm = femtometer = 10-15 m). If alpha particles of the same initial kinetic energy are projected at nuclei with atomic number 88, what is the distance of closest approach? Give your answer in fm. (Enter the number only -- do not include the units in your...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at elevation angle θ0. (a) Express her momentum relative to the location of the shot as a function of time. (b) How fast does the momentum change? (c) Calculate the size vector r × F directly and compare it with the result of problem (b). Why both results are identical
A dart of mass m is fired at and sticks into a block of mass M...
A dart of mass m is fired at and sticks into a block of mass M that is initially at rest on a rough, horizontal surface. The coefficient of kinetic friction between the block and the surface is μk. After the collision, the dart and the block slide a distance D before coming to rest. If the dart were fired horizontally, what would its speed be immediately before impact with the block? (Use any variable or symbol stated above along...
1) Find the uncertainty in kinetic energy. Kinetic energy depends on mass and velocity according to...
1) Find the uncertainty in kinetic energy. Kinetic energy depends on mass and velocity according to this function E(m,v) = 1/2 m v2. Your measured mass and velocity have the following uncertainties     2.58 kg and   0.36 m/s. What is is the uncertainty in energy,  , if the measured mass, m = 4.75 kg and the measured velocity, v = -3.76 m/s? Units are not needed in your answer 2)Find the uncertainty in kinetic energy. Kinetic energy depends on mass and velocity according to...
A ballistic with mass of m=5.38-Oz was fired towards a Ballistic Pendulum at initial velocity of...
A ballistic with mass of m=5.38-Oz was fired towards a Ballistic Pendulum at initial velocity of υ into a large block of wood with mass of M=20.31_kg. As a result of the collision the pendulum and the projectile together swung up to the maximum height h = 0.831_m at a velocity of υb. Find a) υb velocity soon after impact, b) initial velocity υa , c) KE of the small mass, d) KE of the combined mass, e) PE of...
3. Suppose a beam of particles of mass m and kinetic energy E is incident from...
3. Suppose a beam of particles of mass m and kinetic energy E is incident from the left on a potential well given by: U(x) = ?U0 (for 0 < x < L where U0 > 0) U(x) = 0 ( otherwise ) (a) What is the Schrodinger Wave Equation (S.W.E.) for the region x < 0 ? (Hint: include both incident and reflected waves) (b) What is the S.W.E. for the region x > L ? (Hint: this will...
A rifle of mass M is initially at rest. A bullet of mass m is fired...
A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired? A) −mv B) mv C) Mv/m D) mv/M
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 220 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d = 2.10 m from the bottom of the table. Determine the initial speed of the bullet. ___m/s
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 210 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d =  1.90 m from the bottom of the table. Determine the initial speed of the bullet. ________m/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT