Question

In: Physics

A bullet of mass m = 8.00 g is fired into a block of mass M...

A bullet of mass m = 8.00 g is fired into a block of mass M = 210 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d =  1.90 m from the bottom of the table. Determine the initial speed of the bullet.

________m/s

Solutions

Expert Solution

Given:

Mass of the bullet,

Mass of the block,

Initial velocity of the block,

Height of the table,

Horizontal distance covered by the bullet-block system after the collision,

Let be the initial speed of the bullet

==============

First, find the time taken by the bullet-block to hit the bottom.

Consider the vertical motion of the bullet-block system

Use formula

-----------------------

Consider the horizontal motion of the bullet-block system

There is no acceleration in horizontal direction, so horizontal velocity remains constant.

Horizontal velocity = Horizontal distance/Time

----------------------------------

Velocity of bullet-block system after the collision

====================================

Initial speed of the bullet

Consider the collision between the bullet and the block

During collision momentum is conserved

Initial momentum = Final momentum

ANSWER:

=============================


Related Solutions

A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 220 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d = 2.10 m from the bottom of the table. Determine the initial speed of the bullet. ___m/s
A bullet of mass m = 29 g is fired into a wooden block of mass...
A bullet of mass m = 29 g is fired into a wooden block of mass M = 4.9 kg as shown in the figure below. The block is attached to a string of length 1.5 m. The bullet is embedded in the block, causing the block to then swing as shown in the figure. If the block reaches a maximum height of h = 0.27 m, what was the initial speed of the bullet?
A bullet with a mass m b = 11.5 g is fired into a block of...
A bullet with a mass m b = 11.5 g is fired into a block of wood at velocity v b = 265 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
A bullet with a mass m b = 13.1 g is fired into a block of...
A bullet with a mass m b = 13.1 g is fired into a block of wood at velocity v b = 245 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
A bullet of mass 5.00 g is fired horizontally into a wooden block of mass 1.16...
A bullet of mass 5.00 g is fired horizontally into a wooden block of mass 1.16 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.240. The bullet remains embedded in the block, which is observed to slide a distance 0.200 m along the surface before stopping. Part A What was the initial speed of the bullet?
A 12.7 g bullet is fired into a block of wood at 245 m/s. The block...
A 12.7 g bullet is fired into a block of wood at 245 m/s. The block is attached to a spring constant of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially at rest at the edge of a frictionless table of height h=0.90 m. The bullet remains in the block and the block lands a distance d=0.68 m from the bottom of the table. Picture1 a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic Energy during the collision. ΔK = J.
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.67 m from the bottom of the table. a)Determine the initial velocity of the bullet. b) Determine the loss of kinetic Energy during the collision.
A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.00 m. The bullet remains in the block and the block lands a distance d=0.60 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic energy during the collision. ΔK = J
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.65 m from the bottom of the table. Determine the initial velocity of the bullet. Determine the loss of kinetic Energy during the collision
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT