Question

In: Physics

An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa...

An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa pressure. It is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to its initital state.

1.Find the net work done on the gas.

Solutions

Expert Solution


Related Solutions

An ideal gas with γ=1.4 occupies 3.0 L at 300 K and 120 kPa pressure and...
An ideal gas with γ=1.4 occupies 3.0 L at 300 K and 120 kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to state A. Part A Find the net work done on the gas. Express your answer using two significant figures. W = Part B Find the minimum volume reached. Express your answer using two significant figures. Vmin =
A 29-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa...
A 29-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa . The gas is compressed adiabatically until its pressure triples, then cooled at constant volume back to 250 K, and finally allowed to expand isothermally to its original state. How much work is done on the gas? What is the minimum volume reached?
If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a...
If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a carnot cycle with temperatures of 22oC and 25oC. The initial pressure is Pa = 5x105Pa and during expansion isothermally at a higher temperature the volume increases 1.5 times. a) Determine the pressure and volume at points a, b, c and draw the graph b) Determine Q, W, and ΔU for each step and for the entire cycle c) Determine efficiency directly from results (b)
One mol of an ideal gas described by Ti = 300 K, Vi = 2.46 L,...
One mol of an ideal gas described by Ti = 300 K, Vi = 2.46 L, and Pi = 10 atm undergoes isobraic expansion (constant pressure) until V = 5 L. Next, it undergoes a reversble isothermal (constant temperature) expansion until P = 1.00 atm followed by isobaric compression to T = 300 K. Finally, it is restored to its original state by reversible, isothermal compression. a) Depict this cyclic process on a P-V diagram. b) Calculate w, q, deltaU,...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R = 0.287 kJ/kg K) as working fluid. Air enters the compressor at temperature of 27◦C and pressure of 1.25 bar and is compressed to 7.6 bar. When the maximum cycle temperature is limited to 800 oC, calculate, (i) the thermal efficiency and work ratio of the cycle (ii) the temperature of air exiting the turbine and the change in specific entropy of turbine process...
A sample of ideal gas at room temperature occupies a volume of 22.0 L at a...
A sample of ideal gas at room temperature occupies a volume of 22.0 L at a pressure of 482 torr . If the pressure changes to 2410 torr , with no change in the temperature or moles of gas, what is the new volume, V2?
Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is...
Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is then compressed to 6 MPa in a reversible adiabatic process. Determine the final temperature and the specific work during the compression process using: (a) Ideal gas tables A.8, (b) Constant specific heats A.5.
If 5.0 moles of an ideal gas occupies a volume of 9.3 L, what volume will...
If 5.0 moles of an ideal gas occupies a volume of 9.3 L, what volume will 15.0 moles of the gas occupy? A mixture of oxygen, hydrogen, carbon dioxide and methane gases has a total pressure of 1.3 atm. If the partial pressure of hydrogen is 2.4 psi, the partial pressure of carbon dioxide is 110 torr and the partial pressure of methane is 0.22 atm, how many mmHg does the oxygen exert? For the reaction below, how many mL...
1. A sample of ideal gas at room temperature occupies a volume of 38.0 L at...
1. A sample of ideal gas at room temperature occupies a volume of 38.0 L at a pressure of 512 torr . If the pressure changes to 2560 torr , with no change in the temperature or moles of gas, what is the new volume, V2? Express your answer with the appropriate units. V2 = 2. If the volume of the original sample in Part A (P1 = 512 torr , V1 = 38.0 L ) changes to 51.0 L...
Q1-If 70.5 moles of an ideal gas occupies 77.5 liters at 419 K, what is the...
Q1-If 70.5 moles of an ideal gas occupies 77.5 liters at 419 K, what is the pressure of the gas? Q2-If 55.5 moles of an ideal gas is at 9.77 atm at 57.90 °C, what is the volume of the gas? Q3-If 4.23 moles of an ideal gas has a pressure of 4.76 atm, and a volume of 82.55 L, what is the temperature of the sample? Q4-If an ideal gas has a pressure of 5.45 atm, a temperature of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT