Question

In: Math

y''-2y'+y=exx-1

y''-2y'+y=exx-1

Solutions

Expert Solution


Related Solutions

y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
y''-2y'+1=0; y(0)=0, y'(0)=-1
y''-2y'+1=0; y(0)=0, y'(0)=-1
y''+2y'+2y=0,y(45)=2,y'(45)=-2
y''+2y'+2y=0,y(45)=2,y'(45)=-2
Given the differential equation y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not...
Given the differential equation y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not need to actually find the solution to the differential equation.
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
y"-2y'+2y = x^2+e^2x
y"-2y'+2y = x^2+e^2x
y''-3y'+2y=1+cost+e^-t
y''-3y'+2y=1+cost+e^-t
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT