Question

In: Advanced Math

Given the differential equation y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not...

Given the differential equation

y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2

Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not need to actually find the solution to the differential equation.

Solutions

Expert Solution


Related Solutions

Given the differential equation y′′-3y′-4y=-2sin(2t),  y(0)=-1,  y′(0)=1 Apply the Laplace Transform and solve for Y Y(s)=L{y} Y(s)=    L(y′)=sY(s)-y(0)and...
Given the differential equation y′′-3y′-4y=-2sin(2t),  y(0)=-1,  y′(0)=1 Apply the Laplace Transform and solve for Y Y(s)=L{y} Y(s)=    L(y′)=sY(s)-y(0)and L(y′′)=s2Y(s)-y′(0)-sy(0)
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) =...
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) = 0, y'(0) = 0, y''(0) = 0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Solve using Laplace Transform ty'' + 2(t-1)y'-2y = 0 y(0)=0, y'(0)=0, Y(s) = C/(s^2+2s)^2 (C is...
Solve using Laplace Transform ty'' + 2(t-1)y'-2y = 0 y(0)=0, y'(0)=0, Y(s) = C/(s^2+2s)^2 (C is arbitrary)
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT