In: Accounting
Solution :
The value of a stock today is calculated as follows :
The value of a stock today = Present value of dividends + Present value of share at year n
Thus the value of a stock today with respect to the details given in the question is calculated using the formula
= [ D1 * ( 1 / ( 1 + r)1 ) ] + [ D2 * ( 1 / ( 1 + r)2 ) ] + [ D3 * ( 1 / ( 1 + r)3) ] + [ D4 * ( 1 / ( 1 + r)4 ) ] + [ D5 * ( 1 / ( 1 + r)5 ) ] + [ P5 * ( 1 / ( 1 + r)5 ) ]
Calculation of Dividend per share Years 1 to 5 :
As per the information given in the question we have
D0 = $ 2.00 ; g1 = 20 % ; g2 = 20 % ; g3 = 20 % ; g4 = 11 % ; g5 = 11 % ;
Thus the Dividend per year can be calculated as follows :
D1 = D0 * ( 1 + g1 ) = $ 2 * ( 1 + 0.20 ) = $ 2 * 1.20 = $ 2.40
D2 = D1 * ( 1 + g2 ) = $ 2.40 * ( 1 + 0.20 ) = $ 2.40 * 1.20= $ 2.88
D3 = D2 * ( 1 + g3 ) = $ 2.88 * ( 1 + 0.20 ) = $ 2.88 * 1.20 = $ 3.4560
D4 = D3 * ( 1 + g4 ) = $ 3.4560 * ( 1 + 0.11 ) = $ 3.4560 * 1.11 = $ 3.836160
D5 = D4 * ( 1 + g5 ) = $ 3.836160 * ( 1 + 0.11 ) = $ 3.836160 * 1.11 = $ 4.258138
Thus we have
D1 = $ 2.40 ; D2 = $ 2.88 ; D3 = $ 3.4560 ; D4 = $ 3.836160 ; D5 = $ 4.258138 ;
Calculation of price of share at year 5 :
Price of the share at year 5 where the firm expects a constant growth rate of 6 %
The formula for calculating the price of the share at year 3
P5 = [ D5 * ( 1 + g ) ] / ( Ke – g )
We know that
D5 = $ 4.258138 ; g = 6 % = 0.06 ; Ke = 16 % = 0.16 ;
P5 = [ $ 4.258138 * ( 1 + 0.06 ) ] / ( 0.16 - 0.06 )
= ( $ 4.258138 * 1.06 ) / ( 0.16 - 0.06 )
= ( $ 4.258138 * 1.06 ) / 0.10
= $ 4.513626 / 0.10
= $ 45.136260
Thus the price of the share at year 5 = $ 45.136260
Calculation of value of a stock today :
Thus the current price of the share = [ D1 * ( 1 / ( 1 + r)1 ) ] + [ D2 * ( 1 / ( 1 + r)2 ) ] + [ D3 * ( 1 / ( 1 + r)3) ] + [ D4 * ( 1 / ( 1 + r)4 ) ] + [ D5 * ( 1 / ( 1 + r)5 ) ] + [ P5* ( 1 / ( 1 + r)5 ) ]
Applying the available information in the formula we have the value of a stock today as follows :
= [ $ 2.4 * ( 1 / 1.16 )1 ] + [ $ 2.88 * ( 1 / 1.16 )2 ] + [ $ 3.456 * ( 1 / 1.16 )3 ] + [ $ 3.836160 * ( 1 / 1.16 )4 ] + [ $ 4.258138 * ( 1 / 1.16 )5 ] + [ 45.136260 * ( 1 / 1.16 )5 ]
= [ $ 2.4 * 0.862069 ] + [ $ 2.88 * 0.743163 ] + [ $ 3.456 * 0.640658 ] + [ $ 3.836160 * 0.552291 ] + [ $ 4.258138 * 0.476113 ] + [ $ 45.136260 * 0.476113 ]
= $ 2.068966 + $ 2.140309 + $ 2.214114 + $ 2.118677 + 2.027355 + $ 21.489960
= $ 32.059381
= $ 32.06 ( when rounded off to two decimal places )
Thus the value that should be placed on the stock = $ 32.06