In: Finance
The Portheus Corp. currently pays a dividend of $3.00 per share. This dividend is expected to grow at a rate of 14% per year for the next 5 years and at a constant rate of 4% per year thereafter. If Portheus’ stock has a required return of 8% per year, what should the current price of the stock be?
Current price of stock should be $ 119.90
As per dividend discount method, current share price is the present value of future dividends. | ||||||
Step-1:Present value of dividend of non-constant growth years | ||||||
Year | Dividend | Discount factor | Present value | |||
a | b | c=1.08^-a | d=b*c | |||
1 | $ 3.42 | 0.9259 | $ 3.17 | |||
2 | $ 3.90 | 0.8573 | $ 3.34 | |||
3 | $ 4.44 | 0.7938 | $ 3.53 | |||
4 | $ 5.07 | 0.7350 | $ 3.72 | |||
5 | $ 5.78 | 0.6806 | $ 3.93 | |||
Total | $ 17.69 | |||||
Working; | ||||||
Dividend of Year : | ||||||
1 | = | $ 3.00 | * | 1.14 | = | $ 3.42 |
2 | = | $ 3.42 | * | 1.14 | = | $ 3.90 |
3 | = | $ 3.90 | * | 1.14 | = | $ 4.44 |
4 | = | $ 4.44 | * | 1.14 | = | $ 5.07 |
5 | = | $ 5.07 | * | 1.14 | = | $ 5.78 |
Step-2:Calculation of terminal value of dividend at the end of non-constant growth years | ||||||
Terminal value | = | D5*(1+g)/(Ke-g)*DF5 | Where, | |||
= | $ 102.21 | D5(Dividend of year 5) | = | $ 5.78 | ||
g (Growth rate in dividend) | = | 4% | ||||
Ke (Required return) | = | 8% | ||||
DF18 (Discount factor of year 18) | = | 0.6806 | ||||
Step-3:Sum of present value of future dividends | ||||||
Sum of present value of future dividends | = | $ 17.69 | + | $ 102.21 | ||
= | $ 119.90 | |||||
So, Price of stock is | $ 119.90 |