Question

In: Physics

A 2m long string is stretched between two supports with a tension that produces a wave...

A 2m long string is stretched between two supports with a tension that produces a wave speed equal to vw = 35 m/s. What are the wavelength and frequency of the first three modes that resonate on the string?

Solutions

Expert Solution


Related Solutions

A rope of length 1.51 m is stretched between two supports with a tension that makes...
A rope of length 1.51 m is stretched between two supports with a tension that makes the transverse waves have a speed of 47.6 m/s.What is the wavelength of the fundamental harmonic?What is the frequency of the fundamental harmonic?What is the wavelength of the second overtone?What is the frequency of the second overtone?What is the wavelength of the fourth harmonic?What is the frequency of the fourth harmonic?
A steel string of length 2.0 meters and mass 15g/m is stretched with a tension of...
A steel string of length 2.0 meters and mass 15g/m is stretched with a tension of 120 N and is fixed at both ends. (i)   Write down the wave equation and find the general solution for string oscillations using the method of variable separation. (ii)   Find the 1st three natural frequencies and draw the corresponding mode shapes.
Tension is maintained in a string as in the figure below. The observed wave speed is...
Tension is maintained in a string as in the figure below. The observed wave speed is v = 23.5 m/s when the suspended mass is m = 3.00 kg.  What is the mass per unit length of the string?  kg/m  What is the wave speed when the suspended mass is m = 2.15 kg?  m/s
A rope of negligible mass is stretched horizontally between two supports that are 2.81 m apart....
A rope of negligible mass is stretched horizontally between two supports that are 2.81 m apart. When an object of weight 4190 N is hung at the center of the rope, the rope is observed to sag by 39.6 cm. What is the tension in the rope?
A 0.49-kg cord is stretched between two supports,7.3m apart. When one support is struck by a...
A 0.49-kg cord is stretched between two supports,7.3m apart. When one support is struck by a hammer, a transverse wave travels down the cord and reaches the other support in 0.83s .   What is the tension in the cord? (Express your answer to two significant figures and include the appropriate units.
I. What is the difference between a standing wave in a string and a wave that...
I. What is the difference between a standing wave in a string and a wave that progresses within a string? a) in a standing wave the location of maximums and minimums along the string is constant in time. b) in a wave that progresses the velocity of the wave changes with time. c) in a standing wave the wavelength is constant, whereas in a progressing wave it is not d) a standing wave is only created by having an external...
The equation of a transverse wave on a string is y=(5mm)Sin[(10m-1)x+(200s-1)t]. The tension in the string...
The equation of a transverse wave on a string is y=(5mm)Sin[(10m-1)x+(200s-1)t]. The tension in the string is 50 N. (a) What is the wavelength of the wave? (b) What is the frequency of the wave? (c) What is the speed of the wave? (d) Find the linear density of this string.
20. Energy in waves. As a sine-shaped wave moves along a stretched string, each coil os...
20. Energy in waves. As a sine-shaped wave moves along a stretched string, each coil os the spring will execute the simple harmonic motion. Suppose that a spring with linear density µ= 0.40 kg/m has a tension T=1.6N in it and that a sine-shaped wave of amplitude 10cm and wavelength of 1.5 is moving along the sprig. Consider a 1cm segment of the spring. a. What is the mass of the 1cm segment of the spring? b. What is the...
A string is stretched between a fixed support and a pulley a distance 125 cm apart....
A string is stretched between a fixed support and a pulley a distance 125 cm apart. The tension on the string is controlled by a weight hanging from the string below the pulley. An electomechnical vibrator is used to vibrate the string at 120 Hz. When the weight is adjusted to 275 g, the string is found to oscillate in its third standing wave mode (three loops). What is the speed of wave propogation on the string in this mode?...
Two waves traveling in opposite directions on a stretched rope interfere to give the standing wave...
Two waves traveling in opposite directions on a stretched rope interfere to give the standing wave described by the following wave function: y(x,t) = 4 sin⁡(2πx) cos⁡(120πt), where, y is in centimetres, x is in meters, and t is in seconds. The rope is two meters long, L = 2 m, and is fixed at both ends. The distance between two successive antinodes is: d_AA = 0.25 m d_AA = 0.15 m d_AA = 1 m d_AA = 0.5m d_AA...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT