Question

In: Physics

A transverse sinusoidal wave is generated at one end of a long, horizontal string by a...

A transverse sinusoidal wave is generated at one end of a long, horizontal string by a bar that moves up and down through a distance of 1.7 cm. The motion is continuous and is repeated regularly 160 times per second. The string has linear density 460 g/m and is kept under a tension of 140 N. Find the maximum value of (a) the transverse speed u and (b) the transverse component of the tension T. (c)Show that the two maximum values calculated above occur at the same phase values for the wave. What is the transverse displacement y of the string at these phases? (d) What is the maximum rate of energy transfer along the string? (e) What is the transverse displacement y when this maximum transfer occurs? (f ) What is the minimum rate of energy transfer along the string? (g) What is the transverse displacement y when this minimum transfer occurs?

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions


Related Solutions

A transverse sinusoidal wave on a string has a period T = 27.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 27.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s. What is the phase constant? in rad Write the wave function for the wave. (Use the form Asin(kx + ωt + ϕ). Round...
A transverse sinusoidal wave on a string has a period T = 29.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 29.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 1.50 m/s. (a) What is the amplitude of the wave? __________m (b) What is the phase constant? __________rad (c) What is the maximum transverse speed...
A transverse sinusoidal wave on a string has a period T = 33.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 33.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.00 m/s. (a) What is the amplitude of the wave? m (b) What is the phase constant? rad (c) What is the maximum transverse speed...
A transverse sinusoidal wave on a string is moving in the −x-direction. Its speed is 30.0...
A transverse sinusoidal wave on a string is moving in the −x-direction. Its speed is 30.0 m/s, and its period is 20.0 ms. At t = 0, a colored mark on the string at x = 0 has a vertical position of 2.00 cm and is moving down with a speed of 1.30 m/s. (a) What is the amplitude of the wave (in m)? 0.0204 Correct: Your answer is correct. m (b) What is the phase constant (in rad)? Incorrect:...
The equation of a transverse wave travelling along a very long string is ? = 0.06???(2??...
The equation of a transverse wave travelling along a very long string is ? = 0.06???(2?? − 4??). The string has a linear density of 0.025 kg/m. Determine: (a) the direction of the wave. (b) the wavelength, frequency and wave velocity. (c) the displacement y for the string particle at x = 0.035 m at time t = 0.26 s. (d) the maximum speed of a string particle.(e) the tension in the string. Sketch the wave on the string at...
A sinusoidal wave in a string is described by the wave function y = 0.155 sin...
A sinusoidal wave in a string is described by the wave function y = 0.155 sin (0.525x - 46.5t) where x and y are in meters and t is in seconds. The mass per length of the string is 13.2 g/m. (a) Find the maximum transverse acceleration of an element of this string. (b) Determine the maximum transverse force on a 1.00-cm segment of the string. (c) State how the force found in part (b) compares with the tension in...
1 The equation of a transverse wave on a string is ? = (2.0 ?) sin(20?...
1 The equation of a transverse wave on a string is ? = (2.0 ?) sin(20? − 600?). What is the wave speed of the wave and the linear density of the string if it has a tension of 15 ?? 2 A block is in simple harmonic motion on the end of a spring with its position given by ?(?) = ? cos(?? + ?). If ? = ?/5 ???, then at ? = 0 ? what percentage of...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction,...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction, is partially reflected at the point x = 0, so that the reflected wave is in phase with the incident wave at x = 0 but has amplitude kA, where 0 ≤ k ≤ 1 is the reflection coefficient. a) Show that each point on the string undergoes simple harmonic motion and determine how the amplitude of the simple harmonic motion varies with x...
A sinusoidal wave is traveling on a string with speed 34.9 cm/s. The displacement of the...
A sinusoidal wave is traveling on a string with speed 34.9 cm/s. The displacement of the particles of the string at x = 5.9 cm is found to vary with time according to the equation y = (3.9 cm) sin[1.2 - (7.1 s-1)t]. The linear density of the string is 4.8 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form y(x,t) = ym sin(kx - ωt), what are...
To understand the standard formula for a sinusoidal traveling wave. One formula for a wave with...
Learning Goal:To understand the standard formula for a sinusoidal traveling wave.One formula for a wave with a y displacement (e.g., of a string) traveling in the x direction isy(x,t)=Asin(kx−ωt).All the questions in this problem refer to this formula and to the wave it describes.1)What is the phase ϕ(x,t) of the wave?Express the phase in terms of one or more given variables ( A, k, x, t, and ω) and any needed constants like πϕ(x,t)=2)What is the wavelength λ of the wave?Express the wavelength in terms of one or more given variables ( A, k, x, t, and ω)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT