Question

In: Mechanical Engineering

A steel string of length 2.0 meters and mass 15g/m is stretched with a tension of...

A steel string of length 2.0 meters and mass 15g/m is stretched with a tension of 120 N and is fixed at both ends.

(i)   Write down the wave equation and find the general solution for string oscillations using the method of variable separation.

(ii)   Find the 1st three natural frequencies and draw the corresponding mode shapes.

Solutions

Expert Solution

The wave equation is:

where is the speed of the wave in the medium.

To solve it by the method of separation of variables, we assume that:

Let the length of the string be . The boundary conditions in the x-direction are:

The first boundary condition gives us and the second boundary condition gives us the eigenvalues:

So, by using the principle of superposition, a general solution to the wave equation is:

where the constants as defined below can be determined from the initial conditions which are not stated in this case, so the answer is left in its most general form.

First three natural frequencies correspond to respectively and the mode shapes correspond to the shapes of the function . They are plotted as shown below:

The wave velocity is:

In this case we must find the first 3 natural frequencies as:


Related Solutions

A piano wire with mass 2.60g and length 84.0 cm is stretched with a tension of...
A piano wire with mass 2.60g and length 84.0 cm is stretched with a tension of 25.0 N. A wave with frequency 120.0 Hz and amplitude 1.6 mm travels along the wire. Calculate the average power carried by the wave. What is the average power if the wave amplitude is halved?
A rope of length 1.51 m is stretched between two supports with a tension that makes...
A rope of length 1.51 m is stretched between two supports with a tension that makes the transverse waves have a speed of 47.6 m/s.What is the wavelength of the fundamental harmonic?What is the frequency of the fundamental harmonic?What is the wavelength of the second overtone?What is the frequency of the second overtone?What is the wavelength of the fourth harmonic?What is the frequency of the fourth harmonic?
A stretched string fixed at each end has a mass of 43.0 g and a length...
A stretched string fixed at each end has a mass of 43.0 g and a length of 7.20 m. The tension in the string is 47.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Answer from smallest to largest distance from one end of the string.) nodes ______m ______m ______m ______m antinodes ______m ______m ______m (b) What is the vibration frequency for this harmonic? Hz
A string of total mass 3.00×10-2kg is stretched to a length of 4.9m by applying a...
A string of total mass 3.00×10-2kg is stretched to a length of 4.9m by applying a tension of 14.20N. You flick the end of the string, sending a pulse to the far end. It reflects back to your hand. PLEASE SHOW WORK, I REALLY WANT TO KNOW HOW TO DO THIS! A) How fast is the pulse moving? B) How much time does it take for the pulse to make the round trip (from your hand to the other end...
A piano tuner stretches a steel piano wire with a tension of 765 N. The steel wire has a length of 0.800 m and a mass of 6.00 g.
A piano tuner stretches a steel piano wire with a tension of 765 N. The steel wire has a length of 0.800 m and a mass of 6.00 g.1. What is the frequency f1 of the string's fundamental mode of vibration? (Express your answer numerically in hertz using three significant figures.)=______ Hz2.What is the number n of the highest harmonic that could be heard by a person who is capable of hearing frequencies up to f = 16 kHz?n=_________________
A simple pendulum, 2.0 m in length, is released by a push when the support string...
A simple pendulum, 2.0 m in length, is released by a push when the support string is at an angle of 25° from the vertical. If the initial speed of the suspended mass is 3.0 m/s when at the release point, to what maximum angle will it move in the second half of its swing? a. 47° b. 36° c. 30° d. 19°
A 2m long string is stretched between two supports with a tension that produces a wave...
A 2m long string is stretched between two supports with a tension that produces a wave speed equal to vw = 35 m/s. What are the wavelength and frequency of the first three modes that resonate on the string?
A ball of mass m is attached to a string of length L. It is swung...
A ball of mass m is attached to a string of length L. It is swung in a vertical circle with enough speed to keep the string taut throughout the motion. Assume the ball travels freely in the circle with negligible loss of mechanical energy. Determine if the following six statements are true or false; e.g., enter TTFFFF. The tension in the string is less at the top of the circle than at the bottom of the circle. The acceleration...
A string of length 1.0m has a mass/length of 2.4 g/m and is under 460N of...
A string of length 1.0m has a mass/length of 2.4 g/m and is under 460N of tension. It is vibrating in its third harmonic (n = 3). 1. What is the frequency of the standing wave? The vibrating string produces a sound wave and sits near a half-open tube of length L. The speed of sound is 343m/s. 2. For what minimum value of L does the sound wave produced by the vibrating string resonate with the tube (i.e., coincide...
A certain elastic string has a spring constant of 18n/m, a relaxed length of 3 meters,...
A certain elastic string has a spring constant of 18n/m, a relaxed length of 3 meters, and a mass of 20 grams. A 500 g mass is hung on a string and given a kinetic energy of 2J. While the mass is in oscillating, the string can be plucked and it will produce a sound. What is the highest and lowest frequency of sound which can be produced by plucking the string in this situation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT